banner
晚上好!欢迎来到

阿里云开发者社区

探索云世界
探索云世界
问产品
问产品
考认证
考认证
免费试用
免费试用
参与活动
参与活动
  • 综合

  • 最新

  • 有奖励

  • 免费用

  • PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型

    DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可

    别再熬夜调模型——从构想到落地,我们都管了!

    本文将以 Qwen2.5 : 7B 为例进行演示,介绍如何通过人工智能平台 PAI实现AI 研发的全链路支持,覆盖了从数据标注、模型开发、训练、评估、部署和运维管控的整个AI研发生命周期。

    120 14

    摊牌了,代码不是我自己写的

    本文介绍了如何使用阿里云函数计算FC部署Qwen2.5开源大模型。Qwen2.5支持128K上下文长度和92种编程语言,通过Ollama托管和Open WebUI交互界面实现快速部署与高效调用。函数计

    摊牌了,代码不是我自己写的

    1月更文特别场——寻找用云高手,分享云&AI实践

    我们寻找你,用云高手,欢迎分享你的真知灼见!

    1236 55
    1月更文特别场——寻找用云高手,分享云&AI实践

    阿里云百炼xWaytoAGI共学课DAY3 - 更热门的多模态交互案例带练,实操掌握AI应用开发

    本文章旨在帮助读者了解并掌握大模型多模态技术的实际应用,特别是如何构建基于多模态的实用场景。文档通过几个具体的多模态应用场景,如拍立淘、探一下和诗歌相机,展示了这些技术在日常生活中的应用潜力。

    编译时插桩,Go应用监控的最佳选择

    本文讲解了阿里云编译器团队和可观测团队为了实现Go应用监控选择编译时插桩的原因,同时还介绍了其他的监控方案以及它们的优缺点。

    257 21

    Nacos 配置中心变更利器:自定义标签灰度

    本文是对 MSE Nacos 应用自定义标签灰度的功能介绍,欢迎大家升级版本进行试用。

    363 15

    云原生应用网关进阶:阿里云网络ALB Ingress 全能增强

    在过去半年,ALB Ingress Controller推出了多项高级特性,包括支持AScript自定义脚本、慢启动、连接优雅中断等功能,增强了产品的灵活性和用户体验。此外,还推出了ingress2A

    455 19

    云资源运维难?阿里云免费工具来帮忙

    阿里云推出免费运维工具——云服务诊断,帮助用户提升对云资源的运维效率、降低门槛、减轻负担。其核心功能包括「健康状态」和「诊断」。通过「健康状态」可实时查看云资源是否正常;「诊断」功能则能快速排查网络、

    496 24

    Redis是如何建立连接和处理命令的

    本文主要讲述 Redis 是如何监听客户端发出的set、get等命令的。

    649 28

    从大数据到大模型:如何做到“心无桎梏,身无藩篱”

    在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题

    678 31

    动态链接的魔法:Linux下动态链接库机制探讨

    本文将深入探讨Linux系统中的动态链接库机制,这其中包括但不限于全局符号介入、延迟绑定以及地址无关代码等内容。

    708 23

    deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!

    DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索

    7410 84

    DeepSeek API 调用没反应,超时后报错 500, 这是啥意思,按照对接文档调用的啊

    Error code: 500 - {error: {code: internal_error, param: None, message: An internal error has occure

    DataWorks Data Studio 数据开发

    Data Studio是阿里巴巴基于15年大数据经验打造的智能湖仓一体数据开发平台,兼容阿里云多项计算服务,提供智能化ETL、数据目录管理及跨引擎工作流编排的产品能力。通过个人开发环境实例支持Pyth

    4521 0
    DataWorks Data Studio 数据开发
    |
    2月前
    | | |
    来自: 云原生

    云上应用高可用体系构建:从理论到实践

    如何通过一套方法论和架构体系建立起具有高度确定性和可靠性的系统是企业技术团队关注的重点。阿里云作为国内领先的云服务提供商,始终致力于为企业提供合规、安全、可靠的上云解决方案。本次技术沙龙,我们邀请了支

    195
    云上应用高可用体系构建:从理论到实践
    |
    22天前
    | |

    AI应用开发

    7、如何在阿里云ECS服务器上进行数据备份?

    问题描述在阿里云 ECS 服务器上如何使用快照或OSS存储包进行备份步骤有哪些

    |
    24天前
    |

    回顾·向新:AI 浪潮下的数据存储进化

    在AI 驱动的数据时代,阿里云提供了高性能、高可用、深度集成、弹性降本的存储解决方案来满足多样化的企业需求,赋能企业挖掘数据价值。在此,邀您观看《回顾·向新:AI 浪潮下的数据存储进化》年度发布会,共

    回顾·向新:AI 浪潮下的数据存储进化

    Spring AI,搭建个人AI助手

    本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spr

    918 40
    Spring AI,搭建个人AI助手

    阿里云支持DeepSeek-V3和DeepSeek-R1全自动安装部署,小白也能轻松上手!

    阿里云PAI平台支持DeepSeek-V3和DeepSeek-R1大模型的全自动安装部署,零代码一键完成从训练到推理的全流程。用户只需开通PAI服务,在Model Gallery中选择所需模型并点击部

    761 78

    GitHub Copilot 免费了!程序员们的福音来了!

    《GitHub Copilot 免费了!程序员们的福音来了!》 近日,GitHub 宣布其 AI 编程助手 GitHub Copilot 现在可以免费使用。曾经每月需支付 10 美元订阅费的 Cop

    2595 7
    GitHub Copilot 免费了!程序员们的福音来了!

    一文了解火爆的DeepSeek R1 | AIGC

    DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广

    699 10

    很火的DeepSeek到底是什么

    DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司,成立于2023年。因推出开源 AI 模型 DeepSeek-R1 而引起了广泛关注。与ChatGPT相比,大幅降低了推理模型的成本。

    648 35

    宜搭上新,DeepSeek 插件来了!

    钉钉宜搭近日上线了DeepSeek插件,无需编写复杂代码,普通用户也能轻松调用强大的AI大模型能力。安装后,平台新增「AI生成」组件,支持创意内容生成、JS代码编译、工作汇报等场景,大幅提升工作效率。

    597 2

    Deepseek开源R1系列模型,纯RL助力推理能力大跃升!

    近期Deepseek正式发布 DeepSeek-R1,并同步开源模型权重。DeepSeek-R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。

    轻松在本地部署 DeepSeek 蒸馏模型并无缝集成到你的 IDE

    本文将详细介绍如何在本地部署 DeepSeek 蒸馏模型,内容主要包括 Ollama 的介绍与安装、如何通过 Ollama 部署 DeepSeek、在 ChatBox 中使用 DeepSeek 以及在

    556 13
    轻松在本地部署 DeepSeek 蒸馏模型并无缝集成到你的 IDE

    阿里云PAI部署DeepSeek及调用

    本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过Open

    490 2
    阿里云PAI部署DeepSeek及调用

    Janus-Pro:DeepSeek 开源的多模态模型,支持图像理解和生成

    Janus-Pro是DeepSeek推出的一款开源多模态AI模型,支持图像理解和生成,提供1B和7B两种规模,适配多元应用场景。通过改进的训练策略、扩展的数据集和更大规模的模型,显著提升了文本到图像的

    600 18
    Janus-Pro:DeepSeek 开源的多模态模型,支持图像理解和生成

    DeepSeek-R1 来了,如何从 OpenAI 平滑迁移到 DeepSeek

    Higress 作为一款开源的 AI 网关工具,可以提供基于灰度+观测的平滑迁移方案。

    913 21

    【活动系列】在阿里云百炼构建企业级多模态应用,发布作品赢取礼品

    本次活动旨在鼓励开发者围绕AI应用开发实训课中的音视频交互和多模态RAG能力,在百炼开发者社区发布文章并上传智能体效果截图或视频。活动时间为2025年1月22日至3月31日,分为作品提交、评审和结果公

    Qwen2.5-Max:阿里通义千问超大规模 MoE 模型,使用超过20万亿tokens的预训练数据

    Qwen2.5-Max是阿里云推出的超大规模MoE模型,具备强大的语言处理能力、编程辅助和多模态处理功能,支持29种以上语言和高达128K的上下文长度。

    431 12
    Qwen2.5-Max:阿里通义千问超大规模 MoE 模型,使用超过20万亿tokens的预训练数据

    小白如何开始使用通义灵码(含安装IDE、安装灵码插件)

    PyCharm 和 IntelliJ IDEA 下载安装及通义灵码插件下载安装说明

    1875 2

    PsycoLLM:开源的中文心理大模型,免费 AI 心理医生,支持心理健康评估与多轮对话

    PsycoLLM 是合肥工业大学推出的中文心理大语言模型,基于高质量心理数据集训练,支持心理健康评估、多轮对话和情绪识别,为心理健康领域提供技术支持。

    731 51
    PsycoLLM:开源的中文心理大模型,免费 AI 心理医生,支持心理健康评估与多轮对话

    DeepSeek安装部署指南,基于阿里云PAI零代码,小白也能轻松搞定!

    阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模

    快速调用 Deepseek API!【超详细教程】

    Deepseek 强大的功能,在本教程中,将指导您如何获取 DeepSeek API 密钥,并演示如何使用该密钥调用 DeepSeek API 以进行调试。

    如何调用 DeepSeek-R1 API ?图文教程

    首先登录 DeepSeek 开放平台,创建并保存 API Key。接着,在 Apifox 中设置环境变量,导入 DeepSeek 提供的 cURL 并配置 Authorization 为 `Beare

    【科普向】我们所说的AI模型训练到底在训练什么?

    人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前

    解决方案评测|AI 剧本生成与动画创作

    随着影视、游戏、广告等内容产业的爆发式增长,剧本创作与动画制作的需求量和复杂度持续攀升。传统流程耗时耗力且成本高,平均需12-18个月完成一部中等规模3D动画项目。阿里云通过“AI+云计算”重构这一链

    【科普向】模型蒸馏和模型量化到底是什么???

    在数字化快速发展的时代,人工智能(AI)技术已广泛应用,但大型深度学习模型对计算资源的需求日益增长,增加了部署成本并限制了其在资源有限环境下的应用。为此,研究人员提出了模型蒸馏和模型量化两种关键技术。

    Docker 镜像加速器配置指南

    dockerhub加速器失败,使用第三方加速器

    自注意力机制全解析:从原理到计算细节,一文尽览!

    自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列

    向量数据库 milvus 快速入门

    向量数据库是专为存储和查询高维度向量数据设计的系统,适用于处理文本、图像等非结构化数据。Milvus 是一个高性能、可扩展的向量数据库,支持深度神经网络生成的大规模嵌入向量。安装 Milvus 需要先

    DeepSeek Artifacts:在线实时预览的前端 AI 编程工具,基于DeepSeek V3快速生成React App

    DeepSeek Artifacts是Hugging Face推出的免费AI编程工具,基于DeepSeek V3,支持快速生成React和Tailwind CSS代码,适合快速原型开发和前端组件构建。

    614 38
    DeepSeek Artifacts:在线实时预览的前端 AI 编程工具,基于DeepSeek V3快速生成React App

    Nginx安全加固指北

    在当今数字化时代,网络安全至关重要。Nginx作为流行的Web服务器,不仅提供高性能,还具备强大的安全保障功能。然而,默认配置可能无法抵御所有安全威胁,因此对Nginx进行安全加固尤为重要。本文为系统

    图解前向、反向传播算法,一看就懂!

    前向传播是神经网络中信息从输入层经过隐藏层传递到输出层的过程。每个神经元接收前一层的输出,通过加权求和和激活函数处理后传递给下一层,最终生成预测结果。此过程涉及输入信号、加权求和、激活函数应用等步骤。

    深度学习中模型训练的过拟合与欠拟合问题

    在机器学习和深度学习中,过拟合和欠拟合是影响模型泛化能力的两大常见问题。过拟合指模型在训练数据上表现优异但在新数据上表现差,通常由模型复杂度过高、数据不足或质量差引起;欠拟合则指模型未能充分学习数据中

    DeepSeek V3:DeepSeek 开源的最新多模态 AI 模型,编程能力超越Claude,生成速度提升至 60 TPS

    DeepSeek V3 是深度求索公司开源的最新 AI 模型,采用混合专家架构,具备强大的编程和多语言处理能力,性能超越多个竞争对手。

    709 5
    DeepSeek V3:DeepSeek 开源的最新多模态 AI 模型,编程能力超越Claude,生成速度提升至 60 TPS
    正在加载更多...

    YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络

    YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络

    4 0
    YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络

    YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数

    YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数

    4 0

    YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS

    YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS

    4 0

    Redis,分布式缓存演化之路

    本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等

    Redis,分布式缓存演化之路

    YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度

    YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度

    4 0
    YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度

    YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)

    YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)

    3 0

    YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量

    YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量

    3 0

    YOLOv11改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)

    YOLOv11改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)

    3 0
    YOLOv11改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)

    YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6

    YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6

    4 0

    YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

    YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

    3 0

    YOLOv11改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性

    YOLOv11改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性

    4 0
    YOLOv11改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性

    YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

    YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

    4 0

    YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像

    YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像

    4 0
    YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像

    YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2

    YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2

    3 0
    YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2

    YOLOv11改进策略【注意力机制篇】| CVPR-2023 FSAS 基于频域的自注意力求解器 结合频域计算和卷积操作 降低噪声影响

    YOLOv11改进策略【注意力机制篇】| CVPR-2023 FSAS 基于频域的自注意力求解器 结合频域计算和卷积操作 降低噪声影响

    4 0
    YOLOv11改进策略【注意力机制篇】| CVPR-2023 FSAS 基于频域的自注意力求解器 结合频域计算和卷积操作 降低噪声影响

    YOLOv11改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块

    YOLOv11改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块

    6 1
    YOLOv11改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块

    YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化

    YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化

    4 0
    YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化

    YOLOv11改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新

    YOLOv11改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新

    3 0

    YOLOv11改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新)

    YOLOv11改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新)

    4 1
    YOLOv11改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新)

    YOLOv11改进策略【注意力机制篇】| Mixed Local Channel Attention (MLCA) 同时融合通道、空间、局部信息和全局信息的新型注意力

    YOLOv11改进策略【注意力机制篇】| Mixed Local Channel Attention (MLCA) 同时融合通道、空间、局部信息和全局信息的新型注意力

    5 1
    YOLOv11改进策略【注意力机制篇】| Mixed Local Channel Attention (MLCA) 同时融合通道、空间、局部信息和全局信息的新型注意力

    YOLOv11改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示

    YOLOv11改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示

    6 0
    YOLOv11改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示

    YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度

    YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度

    5 0
    YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度

    YOLOv11改进策略【注意力机制篇】| NAM注意力 即插即用模块,重新优化通道和空间注意力

    YOLOv11改进策略【注意力机制篇】| NAM注意力 即插即用模块,重新优化通道和空间注意力

    6 1
    YOLOv11改进策略【注意力机制篇】| NAM注意力 即插即用模块,重新优化通道和空间注意力

    YOLOv11改进策略【注意力机制篇】| EMA注意力 即插即用模块,提高远距离建模依赖

    YOLOv11改进策略【注意力机制篇】| EMA注意力 即插即用模块,提高远距离建模依赖

    4 0
    YOLOv11改进策略【注意力机制篇】| EMA注意力 即插即用模块,提高远距离建模依赖

    YOLOv11改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互

    YOLOv11改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互

    5 1
    YOLOv11改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互

    YOLOv11改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息

    YOLOv11改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息

    5 1
    YOLOv11改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息

    YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用

    YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用

    5 1
    YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用

    YOLOv11改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例

    YOLOv11改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例

    4 0
    YOLOv11改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例

    YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制

    YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制

    5 1
    YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制

    YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度

    YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度

    4 0
    YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度

    图机器学习调研洞察:PyG与DGL

    图神经网络(GNN)是人工智能领域的研究热点,广泛应用于社交网络、电商推荐、欺诈检测等。主流开源图学习引擎如DGL、PyG、GraphScope等在性能和社区活跃度上各有优劣。基于ogbn-produ

    |
    2小时前
    | | |
    来自: 钉钉宜搭

    在自定义页面中放置图片,绑定的部分数据中无图片,图片位置显示出错文本将图片位置挤变形,如何控制?

    在自定义页面中放置图片绑定的数据中有部分数据无图片图片位置显示出错文本将图片位置挤变形图片所在容器设置了样式控制:root { width: 316px; height: 300px; mar

    在阿里云ECS上一键部署DeepSeek-R1

    Open WebUI 和 Ollama 的联合,通过集成 DeepSeek-R1 的强大功能,赋予每一位用户使用尖端 AI 技术的能力,使得复杂的 AI 技术不再是遥不可及的梦想。无论是研究人员、开发

    在阿里云ECS上一键部署DeepSeek-R1
    |
    3小时前
    |

    钉钉审批用什么方式可以获取审批实例的当前审批人?

    如题所以我现在要通过接口去获取当前审批人但是看了下回调的接口以及获取审批详情都没办法给我要的审批人。难道要通过审批详情的tasks参数去获取吗感觉这个方案有点傻啊我需要同步判断taskStatus为

    1
    |
    3小时前
    | |

    PHP在线聊天系统源码

    PHP在线聊天系统源码

    24 17

    NVIDIA NIM on ACK:优化生成式AI模型的部署与管理

    本文结合NVIDIA NIM和阿里云容器服务,提出了基于ACK的完整服务化管理方案,用于优化生成式AI模型的部署和管理。

    2025最新排名|盘点值得推荐的5个在线客服系统

    在数字化浪潮下,在线客服系统迅速发展,成为企业提升竞争力的关键。本文推荐五款2025年值得使用的在线客服系统:合力亿捷、淘宝、京东、华为云和中国移动客服系统。它们各自具备全渠道接入、智能问答、数据分析

    28 23

    今日小结通过aliyun的本地容器镜像部署我的nginx和php环境

    简介: 本教程介绍如何基于 Dragonwell 的 Ubuntu 镜像创建一个运行 Nginx 的 Docker 容器。首先从阿里云容器镜像服务拉取基础镜像,然后编写 Dockerfile 确保

    29 23

    解锁文件共享软件背后基于 Python 的二叉搜索树算法密码

    文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序

    从铜线到云端:网络技术的跨越与未来趋势

    本文围绕物理网络和云网络基础知识科普进行展开,最后浅谈在AI大模型浪潮下云网络的演进方向。

    3步,0代码!一键部署DeepSeek-V3、DeepSeek-R1

    阿里云PAI Model Gallery支持一键部署DeepSeek-V3、DeepSeek-R1模型,用户可在平台上零代码实现从训练到部署再到推理的全过程,简化开发流程。通过登录PAI控制台,选择M

    大模型综述

    本文是一篇关于大模型的综述文章,旨在帮助读者快速了解并深入研究大模型的核心概念和技术细节。

    Unity 逐字显示 打字机效果

    在 Unity 中实现逐字显示的打字机效果,主要通过 UGUI Text 组件和 C# 脚本完成。核心原理是将文本逐字拆分并按时间间隔依次显示。具体步骤如下:1. 创建 Text 组件和脚本;2. 使

    Unity 打开内嵌网页

    要使用Embedded Browser插件实现网页嵌入功能,首先需下载插件(可从商店或指定地址获取)。安装后,通过将HTML文件放入BrowserAssets文件夹并修改URL前缀为`localGam

    正在加载更多...
    正在加载更多...
    正在加载更多...