技术小白如何利用DeepSeek半小时开发微信小程序?
通过通义灵码的“AI程序员”功能,即使没有编程基础也能轻松创建小程序或网页。借助DeepSeek V3和R1满血版模型,用户只需用自然语言描述需求,就能自动生成代码并优化程序。例如,一个文科生仅通过描述需求就成功开发了一款记录日常活动的微信小程序。此外,通义灵码还提供智能问答模式,帮助用户解决开发中的各种问题,极大简化了开发流程,让普通人的开发体验更加顺畅。
关于计算机视觉中的自回归模型,这篇综述一网打尽了
这篇综述文章全面介绍了自回归模型在计算机视觉领域的应用和发展。文章首先概述了视觉中的序列表示和建模基础知识,随后根据表示策略将视觉自回归模型分为基于像素、标记和尺度的三类框架,并探讨其与生成模型的关系。文章详细阐述了自回归模型在图像、视频、3D及多模态生成等多方面的应用,列举了约250篇参考文献,并讨论了其在新兴领域的潜力和面临的挑战。此外,文章还建立了一个GitHub存储库以整理相关论文,促进了学术合作与知识传播。论文链接:https://arxiv.org/abs/2411.05902
一篇关于DeepSeek模型先进性的阅读理解
本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】
再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
Windows用户必备:Postman v11详细安装指南与API测试入门教程(附官网下载
Postman是全球领先的API开发与测试工具,支持REST、SOAP、GraphQL等协议调试。2025年最新版v11新增AI智能生成测试用例、多环境变量同步等功能,适用于前后端分离开发、自动化测试、接口文档自动生成及团队协作共享API资源。本文详细介绍Postman的软件定位、核心功能、安装步骤、首次配置、基础使用及常见问题解答,帮助用户快速上手并高效利用该工具进行API开发与测试。
AI大模型安全风险和应对方案
AI大模型面临核心安全问题,包括模型内在风险(如欺骗性对齐、不可解释性和模型幻觉)、外部攻击面扩大(如API漏洞、数据泄露和对抗性攻击)及生成内容滥用(如深度伪造和虚假信息)。应对方案涵盖技术防御与优化、全生命周期管理、治理与行业协同及用户教育。未来需关注动态风险适应、跨领域协同和量子安全预研,构建“技术+管理+法律”三位一体的防护体系,推动AI安全发展。