vLLM 架构学习指南
vLLM是高性能大模型推理引擎,核心创新为PagedAttention内存管理与连续批处理技术,显著提升显存利用率和吞吐量。本指南系统讲解其架构设计、源码结构与学习路径,助你从入门到贡献代码,掌握高效LLM服务化能力。
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
114_预训练:Masked LM优化与动态掩码效率深度解析
在大型语言模型(LLM)的预训练阶段,训练目标函数的设计直接影响模型的学习效率和最终性能。Masked Language Modeling(MLM)作为BERT等模型采用的核心预训练任务,通过随机掩盖文本中的部分token并让模型预测这些被掩盖的token,有效地训练了模型的双向表示能力。然而,传统的静态掩码策略存在重复率高、训练效率低等问题。动态掩码技术的引入显著提升了预训练效率和模型性能。本文将全面探讨MLM优化策略,深入推导动态掩码的效率提升原理,并介绍2025年最新的MLM优化技术,为高效预训练LLM提供理论和实践指导。
131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
134_边缘推理:TensorFlow Lite - 优化移动端LLM部署技术详解与实战指南
在人工智能与移动计算深度融合的今天,将大语言模型(LLM)部署到移动端和边缘设备已成为行业发展的重要趋势。TensorFlow Lite作为专为移动和嵌入式设备优化的轻量级推理框架,为开发者提供了将复杂AI模型转换为高效、低功耗边缘计算解决方案的强大工具。随着移动设备硬件性能的不断提升和模型压缩技术的快速发展,2025年的移动端LLM部署已不再是遥远的愿景,而是正在成为现实的技术实践。
126_自定义损失:多目标训练 - 设计加权损失的独特平衡策略
在2025年的大型语言模型(LLM)训练领域,多目标学习已成为提升模型综合性能的关键技术之一。传统的单一损失函数训练方法逐渐显现出局限性,尤其在处理复杂的语言理解、生成和推理任务时。多目标训练通过同时优化多个互补的学习目标,能够显著提升模型的泛化能力、知识保留和任务适应性。
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。