在云上部署ChatGLM2-6B大模型(GPU版)
本教程指导您在配置了Alibaba Cloud Linux 3的GPU云服务器上,安装大模型运行环境(如Anaconda、Pytorch等),并部署大语言模型,最后通过Streamlit运行大模型对话网页Demo。教程包括创建资源、登录ECS实例、安装及校验CUDA、NVIDIA驱动和cuDNN等步骤。
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
深度学习在图像识别中的应用与挑战
【10月更文挑战第40天】本文将探索深度学习在图像识别领域的应用,并讨论其面临的挑战。我们将介绍深度学习的基本原理,以及它在图像识别中的优势和局限性。同时,我们还将探讨一些常见的深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),并展示如何在Python中使用TensorFlow库实现一个简单的图像识别任务。最后,我们将讨论深度学习在图像识别中的挑战,包括数据获取、模型训练和泛化能力等问题。
深入浅出卷积神经网络(CNN)
【10月更文挑战第40天】本文旨在通过浅显易懂的语言和直观的示例,带领初学者了解并掌握卷积神经网络(CNN)的基本概念、结构以及在图像处理中的应用。我们将从CNN的核心组成讲起,逐步深入到网络训练的过程,最后通过一个实际的代码示例来展示如何利用CNN进行图像识别任务。无论你是编程新手还是深度学习爱好者,这篇文章都将为你打开一扇通往人工智能世界的新窗。