数据可视化

首页 标签 数据可视化
# 数据可视化 #
关注
27033内容
1688商品详情数据接口:如何通过1688 API实现批量商品数据抓取和分析
使用1688 API进行批量商品数据抓取和分析,首先需注册账号创建应用获取App Key和Secret Key。研究API文档,构建请求URL,如商品详情、搜索、销售量等接口。利用编程语言发送HTTP请求,实时抓取并处理数据,存储到数据库。实施优化策略,处理错误,记录日志。数据可视化展示并确保API安全性。编写文档并持续更新以适应API变化。参考[c0b.cc/R4rbK2]获取API测试和SDK。
|
1小时前
|
数据分析工具
【5月更文挑战第19天】数据分析工具
|
1小时前
|
数据分析工具有哪些?
【5月更文挑战第19天】数据分析工具有哪些?
|
21小时前
|
使用TensorFlow进行深度学习入门
【5月更文挑战第18天】本文介绍了TensorFlow深度学习入门,包括TensorFlow的概述和一个简单的CNN手写数字识别例子。TensorFlow是由谷歌开发的开源机器学习框架,以其灵活性、可扩展性和高效性著称。文中展示了如何安装TensorFlow,加载MNIST数据集,构建并编译CNN模型,以及训练和评估模型。此外,还提供了预测及可视化结果的代码示例。
|
21小时前
|
Pandas平滑法时序数据
【5月更文挑战第17天】本文介绍了使用Python的Pandas库实现指数平滑法进行时间序列预测分析。指数平滑法是一种加权移动平均预测方法,通过历史数据的加权平均值预测未来趋势。文章首先阐述了指数平滑法的基本原理,包括简单指数平滑的计算公式。接着,展示了如何用Pandas读取时间序列数据并实现指数平滑,提供了示例代码。此外,文中还讨论了指数平滑法在实际项目中的应用,如销售预测和库存管理,并提到了在`statsmodels`库中使用`SimpleExpSmoothing`函数进行模型拟合和预测。最后,文章强调了模型调优、异常值处理、季节性调整以及部署和监控的重要性,旨在帮助读者理解和应用这一方法
|
23小时前
|
Python中的数据可视化技术及应用
数据可视化是数据分析中至关重要的一环,而Python作为一种强大的编程语言,提供了丰富的数据可视化工具和库。本文将介绍Python中常用的数据可视化技术及其在实际应用中的案例,帮助读者更好地理解和运用数据可视化技术。
Python中的数据可视化技术与应用
随着数据科学和人工智能的迅速发展,数据可视化在Python编程中变得愈发重要。本文将介绍Python中常用的数据可视化库及其应用,以及如何利用这些工具创建各种引人入胜的数据图表。
|
1天前
|
数据可视化工具
【5月更文挑战第18天】数据可视化工具
免费试用