达摩院开源RynnBrain:首个支持移动操作的具身大脑基础模型
达摩院发布首个可移动操作的具身基础模型RynnBrain,首创时空记忆与物理空间推理能力,支持视频/图像/文本多模态输入及区域、轨迹等具身输出。开源MOE架构RynnBrain-30B-A3B(仅3B激活参数),在16项基准全面SOTA,并推出全新评测集RynnBrain-Bench。
从“通才”到“专才”:揭秘AI大模型预训练与微调的核心魔法
本文通俗解析AI“预训练+微调”范式:预训练如AI的“基础教育”,让模型从海量数据中自学语言与视觉规律;微调则是定向“专业培训”,用少量业务数据将通用大模型转化为解决具体问题的“专属专家”。全程兼顾原理、步骤与实践,助力零基础用户轻松上手。(239字)
指令微调是什么:让大模型听懂人话的关键技术
指令微调(Instruction Tuning)是提升大模型“听懂人话”能力的关键技术:通过高质量指令-响应对训练,使模型从“会说话”进阶为“懂意图、会回应”,显著增强零样本泛化、任务适应与安全性,已成为大模型落地的必备环节。
大模型微调常见术语解析:新手也能看懂的入门指南
本文通俗解析大模型微调核心术语:涵盖预训练模型、LoRA/QLoRA等轻量方法、学习率/批次大小等训练参数,以及过拟合、数据投毒等效果与安全要点,助新手快速入门并安全实践。(239字)
Python结合京东API实现竞品分析系统
你想要用 Python 结合京东 API 搭建一套「竞品分析系统」,核心目标是批量抓取竞品商品数据、进行多维度对比分析(价格、销量、库存等)、生成可视化分析报告。我会提供完整可落地的方案,涵盖「数据采集 → 数据存储 → 多维度分析 → 可视化输出」全流程,兼顾实用性和易扩展性。
企业做数据治理要多少钱?2026年预算规划+隐性成本避坑指南
2026年,数据治理成企业必选项:78%企业将增加投入,全球市场规模将破420亿美元。但隐性成本(占35%)更需警惕——跨部门协同延误、数据返工、合规罚款及培训不足致59%项目成效不达预期。科学预算须覆盖技术、组织与AI融合需求。(239字)
AI 智能体项目的费用
AI智能体开发费用远超普通编程,涵盖人力(60%-70%)、算力(API或私有GPU年费15万+)、数据工程(3万-10万)及持续调优(年维护费≈开发费20%)。预算从3万元低代码起步,到百万级企业级方案不等。