基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序

简介: 本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。

1.算法运行效果图预览
(完整程序运行后无水印)
image.png

将FPGA的仿真结果导入到MATLAB中,分别得到MATLAB的结果和FPGA的结果:

image.png
image.png

2.算法运行软件版本
vivado2019.2

matlab2022a

3.部分程序
(完整版代码包含详细中文注释和操作步骤视频)
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;
reg i_clk;

reg i_rst;

reg [7:0] Buffer1 [0:300000];
reg [7:0] Buffer2 [0:300000];
reg [7:0] Buffer3 [0:300000];
reg [7:0] II1;
reg [7:0] II2;
reg [7:0] II3;
wire [7:0]o_cfbw;
integer fids1,fids2,fids3,idx=0,dat1,dat2,dat3;

//D:\FPGA_Proj\FPGAtest\codepz
initial
begin
fids1 = $fopen("D:\code\Proj\1.bmp","rb");//调用3个图片
dat1 = $fread(Buffer1,fids1);
$fclose(fids1);
end
initial
begin
fids2 = $fopen("D:\code\Proj\2.bmp","rb");//调用3个图片
dat2 = $fread(Buffer2,fids2);
$fclose(fids2);
end
initial
begin
fids3 = $fopen("D:\code\Proj\3.bmp","rb");//调用3个图片
dat3 = $fread(Buffer3,fids3);
$fclose(fids3);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
II1<=8'd0;
II2<=8'd0;
II3<=8'd0;
idx<=0;
end
else begin
if(idx<=263145)
begin
II1<=Buffer1[idx];
II2<=Buffer2[idx];
II3<=Buffer2[idx];
end
else begin
II1<=8'd0;
II2<=8'd0;
II3<=8'd0;
end

    idx<=idx+1;
end

end

//调用合并模块
tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I1 (II1),
.i_I2 (II2),
.i_I3 (II3),
.o_cfbw (o_cfbw)
);

endmodule
0X_038m

```

4.算法理论概述
运动目标检测是计算机视觉中的一个重要问题,它涉及到从连续的视频帧中识别出运动物体的过程。这项技术在许多领域都有着广泛的应用,如安防监控、自动驾驶、人机交互等。三帧差算法作为一种简单的运动目标检测方法,通过对连续三帧图像的像素值进行比较,来识别出运动区域。

   假设视频流中的连续三帧图像分别为It, It−1, It−2,其中t 表示当前时间点,t−1 和t−2 分别表示前一帧和前两帧。差分图像是通过计算相邻帧之间的像素值差异来获取的。对于三帧差算法而言,我们首先计算相邻两帧之间的差分图像,然后将这两个差分图像相加以获取最终的差分图像。具体步骤如下:

image.png

  在获取最终的差分图像后,我们可以通过设定阈值 T 来检测运动目标。如果某像素点在差分图像中的值超过阈值,则认为该像素点属于运动区域。

  设定阈值 T,如果某像素点(i,j) 在差分图像Dfinal 中的值大于T,则认为该像素点属于运动目标:

image.png

   基于三帧差算法的运动目标检测是一种简单而有效的技术,它通过计算连续三帧图像之间的差分来检测运动目标。虽然这种方法容易受到光照变化和摄像机抖动等因素的影响,但通过一些改进措施(如适应性阈值、高斯滤波和光照补偿等),可以显著提高检测的准确性和鲁棒性。
相关文章
|
4月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
4月前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
5月前
|
传感器 算法
船舶运动控制,PID控制算法,反步积分控制器
船舶运动控制,PID控制算法,反步积分控制器
|
5月前
|
数据采集 边缘计算 算法
遗传算法+多目标规划算法+自适应神经模糊系统(Matlab代码实现)
遗传算法+多目标规划算法+自适应神经模糊系统(Matlab代码实现)
156 4
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
376 2
|
5月前
|
机器学习/深度学习 自然语言处理 算法
基于改进鲸鱼优化算法的微网系统能量优化管理研究(Matlab代码实现)
基于改进鲸鱼优化算法的微网系统能量优化管理研究(Matlab代码实现)
228 1
|
5月前
|
机器学习/深度学习 算法 算法框架/工具
256KB内存约束下的设备端训练:算法与系统协同设计——论文解读
MIT与MIT-IBM Watson AI Lab团队提出一种创新方法,在仅256KB SRAM和1MB Flash的微控制器上实现深度神经网络训练。该研究通过量化感知缩放(QAS)、稀疏层/张量更新及算子重排序等技术,将内存占用降至141KB,较传统框架减少2300倍,首次突破设备端训练的内存瓶颈,推动边缘智能发展。
385 6
|
6月前
|
机器学习/深度学习 算法 机器人
基于Qlearning强化学习的2DoF机械臂运动控制系统matlab仿真
本项目基于Q-learning强化学习算法,实现对二自由度机械臂的运动控制仿真。通过MATLAB 2022a平台,验证了算法在状态、动作与奖励机制下的学习效果,展示了机械臂自主学习达到目标位置的能力。内容涵盖理论模型、算法原理与核心代码实现。
187 7
|
6月前
|
机器学习/深度学习 边缘计算 算法
【状态估计】基于LMS类自适应滤波算法、NLMS 和 LMF 进行系统识别比较研究(Matlab代码实现)
【状态估计】基于LMS类自适应滤波算法、NLMS 和 LMF 进行系统识别比较研究(Matlab代码实现)
229 3
|
5月前
|
存储 算法 生物认证
基于Zhang-Suen算法的图像细化处理FPGA实现,包含testbench和matlab验证程序
本项目基于Zhang-Suen算法实现图像细化处理,支持FPGA与MATLAB双平台验证。通过对比,FPGA细化效果与MATLAB一致,可有效减少图像数据量,便于后续识别与矢量化处理。算法适用于字符识别、指纹识别等领域,配套完整仿真代码及操作说明。

热门文章

最新文章