PyTorch 分布式训练底层原理与 DDP 实战指南
深度学习模型规模激增,如Llama 3.1达4050亿参数,单卡训练需数百年。并行计算通过多GPU协同解决此问题。本文详解PyTorch的分布式数据并行(DDP),涵盖原理、通信机制与代码实战,助你高效实现多卡训练。
AI大模型从训练到部署全流程指南
本文系统讲解Hugging Face核心组件(Tokenizer、Model、Pipeline)及实战应用,涵盖模型推理加速、ONNX与Triton部署、数据清洗增强、DeepSpeed训练、LoRA微调、模型量化蒸馏与移动端部署,并介绍生成质量与伦理安全评估方法。
TensorRT-LLM 推理服务实战指南
`trtllm-serve` 是 TensorRT-LLM 官方推理服务工具,支持一键部署兼容 OpenAI API 的生产级服务,提供模型查询、文本与对话补全等接口,并兼容多模态及分布式部署,助力高效推理。
python torch基础用法
本教程系统讲解PyTorch基础,涵盖张量操作、自动求导、神经网络构建、训练流程、GPU加速及模型保存等核心内容,结合代码实例帮助初学者快速掌握深度学习开发基础,是入门PyTorch的实用指南。