PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4941内容
|
5小时前
|
大模型在云上的训练与部署
本文系统阐述大模型在云上的训练与部署实践路径,涵盖发展趋势、GPU集群搭建、框架选型、数据处理、分布式训练、模型部署、成本优化及金融行业应用案例,全面解析云计算如何支撑大模型高效落地,并展望“大模型即服务”(MaaS)的未来生态。
实用程序:无需付费软件!自制音视频转字幕工具,复制代码直接运行
一款基于Whisper模型的音视频转字幕工具,支持多格式文件,提供可视化界面与实时进度反馈,可自动识别语音并生成简体SRT字幕,操作简单,开源免费,显著提升字幕制作效率。
|
3天前
|
08_昇腾推荐系统加速算子:FBGEMM算子库
FBGEMM算子库适配昇腾平台,支持Torchrec模型在DCNV2和GR等推荐模型中的高效运行。已完成JaggedToPaddedDense、DenseToJagged、HstuDenseForward/Backward等核心算子的移植与优化,并引入自定义算子提升生成式推荐性能,助力推荐系统训练加速。
|
3天前
|
07_昇腾嵌入表性能提升
本文介绍嵌入表性能优化的六大策略:多流并行掩盖通信延迟,Pin Memory加速数据传输,两级去重减少计算冗余,通信模式优化降低开销,梯度累积节省内存,并结合实验验证效果,全面提升训练效率与资源利用率。
|
8天前
|
【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python
【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python
|
11天前
|
Scikit-Learn 1.8引入 Array API,支持 PyTorch 与 CuPy 张量的原生 GPU 加速
Scikit-Learn 1.8.0 首次引入实验性 Array API 支持,可直接使用 CuPy 数组或 PyTorch 张量,计算全程保留在 GPU。交叉验证等操作不再强制转回 CPU,大幅提升效率。需配置环境变量与 `set_config` 开启,目前支持部分组件如 Ridge、GaussianMixture 等,标志其迈向 GPU 加速的重要一步。
|
15天前
|
深度解析 Google JAX 全栈:带你上手开发,从零构建神经网络
Google凭借JAX AI栈实现AI全栈垂直整合,覆盖模型、应用、云与硬件。JAX结合XLA编译器,Flax构建网络,Optax优化训练,Orbax管理 checkpoint,已在Google及Anthropic、Apple等广泛应用,助力高效大规模AI训练。
免费试用