计算机视觉

首页 标签 计算机视觉
# 计算机视觉 #
关注
26131内容
|
7小时前
|
基于 YOLOv8 的智能火灾识别系统设计与实现— 从数据集训练到 PyQt5 可视化部署的完整工程实践
本项目设计并实现了一款基于YOLOv8的智能火灾识别系统,融合深度学习与计算机视觉技术,支持图片、视频、摄像头等多源输入。采用PyQt5开发图形界面,具备高精度、实时性强、易部署等优点,适用于智慧消防、工业巡检等场景,提供完整代码与模型权重,真正实现开箱即用。
|
17小时前
|
金属外表多种生锈检测数据集(1200张图片已划分)|面向工业巡检的目标检测数据集
本数据集包含1202张已标注划分的金属表面锈蚀图像,涵盖缝隙腐蚀、点蚀、均匀腐蚀和一般性腐蚀四类,适用于YOLO等目标检测模型训练。广泛用于工业设备、桥梁管道、建筑钢结构的智能巡检与安全评估,助力实现锈蚀自动识别与全生命周期管理。
实用代码工具:Python打造PDF选区OCR / 截图批量处理工具(支持手动/全自动模式)
一款基于Python的PDF区域OCR与截图工具,支持精准框选、文字识别、图片截取及Excel一键导出。内置手动审核与全自动批量处理模式,结合PyMuPDF、easyocr等技术,实现高效、可视化的PDF数据提取,适用于发票、报表等场景,显著提升办公效率。
|
20小时前
|
面向课堂与自习场景的智能坐姿识别系统——从行为感知到可视化部署的完整工程【YOLOv8】
本系统基于YOLOv8实现课堂与自习场景下的智能坐姿识别,支持标准坐姿与驼背等不良姿态的实时检测。结合PyQt5开发图形界面,提供图片、视频、摄像头多模式输入,具备高精度、低延迟、易部署等特点,适用于智慧校园、健康办公等场景,助力行为规范与健康管理。
|
1天前
|
基于深度学习的农业虫害自动识别系统:YOLOv8 的完整工程
本项目基于YOLOv8构建了覆盖102类害虫的智能识别系统,融合深度学习与PyQt5图形界面,支持图片、视频、摄像头等多源输入,实现虫害精准检测与实时可视化。具备高精度(mAP@0.5 > 90%)、易部署、操作友好等特点,适用于农田监测、温室预警等智慧农业场景,推动AI技术在农业领域的工程化落地。
基于计算机视觉的鸟类数量统计技术原理解析
在鸟类识别中,大规模、密集鸟群的准确计数极具挑战。传统检测方法(如YOLO)难以应对高密度场景,主流方案转向**目标检测跟踪**与**密度估计**两大路线。前者逐只识别追踪,适用于稀疏场景;后者通过点标注生成密度图,直接回归总数,更高效精准,适合万级鸟群统计。实际应用常结合两者,辅以多尺度拍摄与无人机巡航,实现“总数+物种+行为”综合监测。
|
1天前
| |
你的AI,能过真实电商这一关吗?
EcomBench是由通义实验室与SKYLENAGE联合推出的电商AI评测基准,基于真实平台数据,涵盖政策、成本、选品等七大任务,设三档难度,全面检验AI在复杂商业场景下的综合能力,推动电商智能体从“会说话”到“会做事”的跨越。
小麦田间叶片病害目标检测数据集(2000 张已标注):面向目标检测的农业智能识别
本数据集包含2000张高分辨率小麦田间叶片图像,涵盖大麦黄矮病、叶锈病、白粉病及健康叶片四类,标注格式适配YOLO系列模型。数据源自无人机巡检与实地采样,覆盖多种气候与地貌环境,适用于农业病害智能识别、无人机巡检、数字农业平台构建及AI科研教学,助力实现小麦病害精准监测与智能化管理。
|
2天前
|
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
本项目基于YOLOv8实现智能车牌定位检测,涵盖数据处理、模型训练、评估优化及PyQt5可视化界面开发,支持图片、视频、摄像头实时检测。系统精度高、响应快,提供完整代码与预训练模型,适合毕设、课程设计及二次开发,助力智慧交通应用落地。(238字)
免费试用