基于视觉大模型的实时监控系统技术实现解析
该AI视觉系统以视觉大模型为核心,实现货架商品缺货、错位等状态的实时智能监控。无需改造现有摄像头,兼容多种硬件,通过“采集-分析-决策”闭环流程,结合轻量化YOLO模型与动态阈值优化,提升识别精度与响应速度,支持快速部署与多SKU扩展,为零售场景提供低成本、高复用的视觉解决方案。
基于yolov10的吸烟检测系统
本研究基于YOLOv10深度学习算法,构建高精度、实时化吸烟行为检测系统。针对传统方法在复杂场景下检测率低、效率差的问题,利用YOLOv10的动态稀疏注意力与多尺度融合优势,提升小目标与遮挡情况下的识别能力,结合五分类体系实现对香烟、烟雾、电子烟等多目标精准定位。系统支持GPU加速,达30帧/秒以上实时检测,可广泛应用于医院、机场等公共场所,助力无烟环境建设与智能安防升级,推动禁烟政策高效落地。