参与评测「AI 大模型助力客户对话分析」

简介: 本文介绍了作者参与《AI大模型助力客户对话分析》项目的实践与感受,通过阿里云提供的解决方案,从架构设计到具体实施,最终成功部署了AI质检应用,感受到了AI技术的魅力和便捷性。项目分为四步执行,虽然过程中遇到了一些小挑战,但总体上顺利完成了部署,实现了对话记录的质检与分析,有助于提高企业客户的服务效率。

这次参与了《AI 大模型助力客户对话分析》这个项目的部署实践与评测,根据阿里云社区提供的解决方案,来一步步实施

实施到最后完成项目,有一种愉悦的心情,见到最后应用利用大模型来开始AI质检,感受到AI的魅力以及阿里云平台的基础设施能力

Snipaste_2024-10-23_20-00-13.jpg


1、此方案内容是否清晰描述了如何实现AI 客服对话分析的实践原理和实施方法?


此次方案分成了4步来执行,第一步就提供了架构方案,需要用到各个平台组件和云服务,实践起来还是很清晰

发现原来利用AI大模型实现一个AI应用,通过阿里云基础设施,还是很快捷方便的。AI离我们其实没那么远


2、在部署体验过程中,部署方案是否存在让你感到困惑或需要进一步引导的地方?


部署过程中,跳转各个控制台,还是比较繁琐点,这个时候就需要认真下来才行,我就是利用晚上的时间来一步步执行

在第二步的时候,就提前指导用户,准备好账号权限的开通,以及提醒一下阿里云的认证需要,幸好我认证了


本方案最后提供了大模型提示词,不知道如何应用,当时以为是要把提示词放入代码中重新部署


3、本解决方案中提供的示例代码是否能直接应用或作为修改模板?在使用函数计算部署方式中,是否遇到异常或报错?


代码能够完成AI质检,是可以直接应用,但是对函数计算部署了解不够深入,没法更深入的调整代码以及提示词

AI质检步骤执行后,就不知道如何优化,按照每个企业内部sop 进行分析


4、根据本方案部署,你认为是否可以满足实际业务场景中对话分析需求?


我觉得demo体验后,得到对文件的质检,把双方通话记录都输出出来,并进行分析,得到这次分析结果有利于企业客户的效率提升


相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
4天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
34 3
|
7天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
38 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
3天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
5天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
42 4
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
27 1
|
10天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
100 48
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
31 10