参与评测「AI 大模型助力客户对话分析」

简介: 本文介绍了作者参与《AI大模型助力客户对话分析》项目的实践与感受,通过阿里云提供的解决方案,从架构设计到具体实施,最终成功部署了AI质检应用,感受到了AI技术的魅力和便捷性。项目分为四步执行,虽然过程中遇到了一些小挑战,但总体上顺利完成了部署,实现了对话记录的质检与分析,有助于提高企业客户的服务效率。

这次参与了《AI 大模型助力客户对话分析》这个项目的部署实践与评测,根据阿里云社区提供的解决方案,来一步步实施

实施到最后完成项目,有一种愉悦的心情,见到最后应用利用大模型来开始AI质检,感受到AI的魅力以及阿里云平台的基础设施能力

Snipaste_2024-10-23_20-00-13.jpg


1、此方案内容是否清晰描述了如何实现AI 客服对话分析的实践原理和实施方法?


此次方案分成了4步来执行,第一步就提供了架构方案,需要用到各个平台组件和云服务,实践起来还是很清晰

发现原来利用AI大模型实现一个AI应用,通过阿里云基础设施,还是很快捷方便的。AI离我们其实没那么远


2、在部署体验过程中,部署方案是否存在让你感到困惑或需要进一步引导的地方?


部署过程中,跳转各个控制台,还是比较繁琐点,这个时候就需要认真下来才行,我就是利用晚上的时间来一步步执行

在第二步的时候,就提前指导用户,准备好账号权限的开通,以及提醒一下阿里云的认证需要,幸好我认证了


本方案最后提供了大模型提示词,不知道如何应用,当时以为是要把提示词放入代码中重新部署


3、本解决方案中提供的示例代码是否能直接应用或作为修改模板?在使用函数计算部署方式中,是否遇到异常或报错?


代码能够完成AI质检,是可以直接应用,但是对函数计算部署了解不够深入,没法更深入的调整代码以及提示词

AI质检步骤执行后,就不知道如何优化,按照每个企业内部sop 进行分析


4、根据本方案部署,你认为是否可以满足实际业务场景中对话分析需求?


我觉得demo体验后,得到对文件的质检,把双方通话记录都输出出来,并进行分析,得到这次分析结果有利于企业客户的效率提升


相关文章
|
4月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
437 121
|
4月前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
348 114
|
4月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
420 120
|
4月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1768 16
构建AI智能体:一、初识AI大模型与API调用
|
数据采集 人工智能 算法
AI 大模型助力客户对话分析评测
【10月更文挑战第22天】《AI大模型助力客户对话分析》解决方案清晰地概述了从客户对话数据中提取洞察的流程,包括数据收集、预处理、模型训练、意图识别、质量评估和决策支持等环节。然而,方案在具体实施方法、模型选择、性能评估和业务决策转化等方面描述较为简略,缺乏详细的操作步骤和工具推荐。此外,示例代码较为简略,部署过程中存在多渠道数据整合、模型训练参数设置等困惑。建议增加具体实施步骤、示例代码和注释,并加强与客户的沟通和反馈机制,以提高方案的可操作性和实际应用能力。
|
人工智能 Serverless
AI 大模型助力客户对话分析 ——实践操作
参与《AI大模型助力客户对话分析》项目,基于阿里云社区操作路书,从架构设计到部署测试,逐步学习并应用大模型进行AI质检。过程中虽有控制台跳转等小挑战,但整体体验流畅,展示了AI技术的便捷与魅力,以及阿里云平台的先进性和社区支持。最终实现的AI质检功能,能够有效提升企业客户服务质量与效率。
274 0
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型助力客户对话分析
该AI大模型解决方案利用NLP和机器学习技术分析客户对话,提升服务质量和用户体验。方案实践原理清晰,涵盖数据处理、模型训练等步骤,适合技术背景不同的用户。阿里云提供详尽的部署引导和文档,降低学习成本。Python脚本实用,但需注意环境配置。方案能满足基本对话分析需求,特定场景下需定制化开发。
319 29
|
机器学习/深度学习 人工智能 自然语言处理
评测:AI 大模型助力客户对话分析
该评测报告详细介绍了Al大模型在客户对话分析中的应用,涵盖了实践原理、实施方法、部署体验、示例代码及业务适应性。报告指出,该方案利用NLP和机器学习技术,深度解析对话内容,精准识别用户意图,显著提升服务质量与客户体验。实施方法清晰明了,文档详尽,部署体验顺畅,提供了丰富的引导和支持。示例代码实用性强,但在依赖库安装和资源限制方面需注意调整。整体上,该方案能够满足基本对话分析需求,但在特定行业场景中还需进一步定制化开发。
|
存储 人工智能 Serverless
AI大模型助力客户对话分析评测文章
在数字化时代,企业面临客户对话数据处理的挑战。阿里云推出的AI大模型助力客户对话分析方案,通过整合多种云服务,实现对话数据的自动化分析,提升服务质量和客户体验。本文将详细介绍该方案的优势与实际应用效果。