【AI系统】MobileVit 系列
MobileViT系列是基于Vision Transformer(ViT)架构设计的轻量级视觉模型,专为移动设备和嵌入式系统优化。MobileViT V1通过结合局部卷积和全局Transformer机制,实现了高性能与低资源消耗的平衡。V2进一步优化了Transformer中的多头自注意力机制,引入了线性复杂度的可分离自注意力,显著提升了计算效率。V3则对融合模块进行了简化,用1x1卷积替代3x3卷积,减少了参数量,同时引入了残差连接,进一步提升了模型性能。这些改进使MobileViT系列在保持高效的同时,能够在资源受限的设备上运行,表现出色。
【AI系统】MobileFormer
本文介绍了MobileFormer,一种创新的网络结构,通过双线桥将MobileNet的局部特征与Transformer的全局特征相结合,实现了高效且低计算成本的模型设计。MobileFormer使用少量tokens来学习全局先验,从而在保持高性能的同时,显著降低了计算量。通过本文,读者可以深入了解如何有效结合CNN和Transformer的优势,实现模型的轻量化。
模型训练数据-MinerU一款Pdf转Markdown软件
MinerU是由上海人工智能实验室OpenDataLab团队开发的开源智能数据提取工具,专长于复杂PDF文档的高效解析与提取。它能够将含有图片、公式、表格等多模态内容的PDF文档转化为Markdown格式,同时支持从网页和电子书中提取内容,显著提升了AI语料准备的效率。MinerU具备高精度的PDF模型解析工具链,能自动识别乱码,保留文档结构,并将公式转换为LaTeX格式,广泛适用于学术、财务、法律等领域。
《C++与 OpenCV 机器学习模块:目标检测的强大融合》
在科技迅猛发展的今天,目标检测成为计算机视觉的关键技术,广泛应用于安防、自动驾驶等领域。C++语言结合OpenCV的机器学习模块,为实现高效精准的目标检测提供了强大支持。从数据预处理到模型训练,再到最终的目标检测,C++与OpenCV的结合不仅优化了开发流程,还提升了检测效率与准确性,展现出广阔的应用前景。
【AI系统】GhostNet 系列
本文介绍了GhostNet系列网络,重点讲解了GhostNet V1和V2的改进。V1提出了Ghost Module,通过廉价操作生成更多特征图,构建轻量级网络。V2在此基础上引入了解耦全连接注意力(DFC)机制,增强了模型捕捉长距离依赖的能力,同时保持了高效的计算性能,特别适合移动设备。文章详细对比了V2与V1的区别,包括结构改进和性能提升。
医疗行业化验单智能识别技术探讨:OCR与表格识别的应用
本文探讨了OCR与表格识别技术在医疗化验单处理中的应用,通过自动化数据提取和录入,显著提高了效率和准确性,降低了人工劳动强度和错误率。技术实现包括图像预处理、文字识别和表格解析等核心算法的优化,支持与医院信息管理系统集成,未来将向跨模态数据融合、多语言适配及数据安全方向发展。
ORCA:基于持续批处理的LLM推理性能优化技术详解
大语言模型(LLMs)的批处理优化面临诸多挑战,尤其是由于推理过程的迭代性导致的资源利用不均问题。ORCA系统通过引入迭代级调度和选择性批处理技术,有效解决了这些问题,大幅提高了GPU资源利用率和系统吞吐量,相比FasterTransformer实现了最高37倍的性能提升。