您是否已经为DMN规则平台做好了准备?
DMN标准旨在让业务用户无需编程即可实现决策逻辑,通过DRD图表、决策表和FEEL语言简化决策建模。本文介绍了DMN的核心概念,并通过测试题帮助读者评估自身是否适合学习DMN。
AWQ: 面向设备端大语言模型压缩与加速的激活感知权重量化——论文阅读
AWQ是一种面向设备端大语言模型(LLM)压缩与加速的激活感知权重量化方法。与传统基于权重大小的量化策略不同,AWQ通过分析输入激活分布识别关键权重通道,并采用按通道缩放策略,在保持硬件效率的同时显著提升量化精度。实验表明,AWQ在多种LLM上实现了接近无损的低比特量化(如INT4),并在边缘设备上实现高达3倍以上的推理加速,为大模型的设备端部署提供了高效解决方案。
论文阅读——使用分区截断奇异值分解滤波的近似卷积
本文提出了一种基于分区截断奇异值分解(PTSVD)的近似卷积方法,旨在降低大型卷积运算的计算复杂度与内存占用,适用于音频信号处理等实时应用场景。该方法通过将脉冲响应分段并进行奇异值分解,仅保留主要奇异值对应的向量进行重构,从而实现高效滤波。实验表明,该方法在保持高精度的同时显著降低了运算量和存储需求,尤其适用于长房间脉冲响应的处理。
改进的激光方法与更快的矩阵乘法——论文阅读
Josh Alman与Virginia Vassilevska Williams在2021年提出改进的激光方法,将矩阵乘法指数ω的上界从2.37287降至2.37286。虽改进微小,但标志着自1986年以来核心技术的重要突破,展示了激光方法的潜力与优化空间。