构建AI智能体:六十七、超参数如何影响大模型?通俗讲解原理、作用与实战示例
超参数是机器学习模型训练前需要人工设定的参数,它们控制着模型的学习过程而非直接通过学习获得。文章通过生动的类比(如自行车调整、烹饪配方)解释了超参数的概念,并详细介绍了其调优流程、常见类型(学习率、批量大小等)及对模型的影响。通过实际代码示例,展示了不同超参数设置如何影响模型训练效果,强调合理调优对提升模型性能、防止过拟合和优化资源使用的重要性。文章指出,超参数调优是模型成功的关键,初学者可从默认值开始逐步实验,借助网格搜索等工具实现高效调参。
⚡ 模型推理加速
大模型推理加速关键技术:KV-Cache减少重复计算,连续批处理提升吞吐,投机解码加快生成,结合vLLM等工具实现高效部署。面试聚焦内存优化、并行策略与延迟平衡。