开发者社区> 大数据与机器学习> 实时计算 Flink

实时计算 Flink

关注

实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。

0
今日
22608
内容
29
活动
200460
关注
|
1天前
|
流计算 API 数据库
|

flink cdc 3.1读取数据报错

14 1
|
2天前
|
流计算 对象存储 存储
|

flink 读取oss-hdfs数据问题

11 1
|
4天前
|
SQL 存储 API
|

Flink Materialized Table:构建流批一体 ETL

本文整理自阿里云智能集团 Apache Flink Committer 刘大龙老师在2024FFA流批一体论坛的分享,涵盖三部分内容:数据工程师用户故事、Materialized Table 构建流批一体 ETL 及 Demo。文章通过案例分析传统 Lambda 架构的挑战,介绍了 Materialized Table 如何简化流批处理,提供统一 API 和声明式 ETL,实现高效的数据处理和维护。最后展示了基于 Flink 和 Paimon 的实际演示,帮助用户更好地理解和应用这一技术。

257 7
|
6天前
|
SQL 消息中间件 Kafka
|

Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计

本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。

358 20
|
12天前
|
SQL 人工智能 关系型数据库
|

Flink CDC YAML:面向数据集成的 API 设计

本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。

321 12
|
13天前
|
流计算 关系型数据库 Oracle
|

flink cdc oracle 19c 权限不足问题

34 1
|
25天前
|
SQL OLAP API
|

微财基于 Flink 构造实时变量池

本文整理自微财资深数据开发工程师穆建魁老师在 Flink Forward Asia 2024 行业解决方案(一)专场中的分享。主要涵盖三部分内容:1) 基于 Flink 构建实时变量池,解决传统方案中数据库耦合度高、QPS 上限低等问题;2) 选择 Flink 进行流式计算的架构选型(Kappa 架构)及开发效率提升策略,通过数据分层优化开发流程;3) 实时变量池架构与多流关联优化实践,确保高效处理和存储实时变量,并应用于公司多个业务领域。

295 4
|
27天前
|
存储 人工智能 分布式计算
|

湖仓实时化升级 :Uniflow 构建流批一体实时湖仓

本文整理自阿里云产品经理李昊哲在Flink Forward Asia 2024流批一体专场的分享,涵盖实时湖仓发展趋势、基于Flink搭建流批一体实时湖仓及Materialized Table优化三方面。首先探讨了实时湖仓的发展趋势和背景,特别是阿里云在该领域的领导地位。接着介绍了Uniflow解决方案,通过Flink CDC、Paimon存储等技术实现低成本、高性能的流批一体处理。最后,重点讲解了Materialized Table如何简化用户操作,提升数据查询和补数体验,助力企业高效应对不同业务需求。

419 18
|
29天前
|
SQL 存储 大数据
|

Flink 基础详解:大数据处理的强大引擎

Apache Flink 是一个分布式流批一体化的开源平台,专为大规模数据处理设计。它支持实时流处理和批处理,具有高吞吐量、低延迟特性。Flink 提供统一的编程抽象,简化大数据应用开发,并在流处理方面表现卓越,广泛应用于实时监控、金融交易分析等场景。其架构包括 JobManager、TaskManager 和 Client,支持并行度、水位线、时间语义等基础属性。Flink 还提供了丰富的算子、状态管理和容错机制,如检查点和 Savepoint,确保作业的可靠性和一致性。此外,Flink 支持 SQL 查询和 CDC 功能,实现实时数据捕获与同步,广泛应用于数据仓库和实时数据分析领域。

210 32
|
29天前
|
SQL 大数据 数据处理
|

Flink SQL 详解:流批一体处理的强大工具

Flink SQL 是为应对传统数据处理框架中流批分离的问题而诞生的,它融合了SQL的简洁性和Flink的强大流批处理能力,降低了大数据处理门槛。其核心工作原理包括生成逻辑执行计划、查询优化和构建算子树,确保高效执行。Flink SQL 支持过滤、投影、聚合、连接和窗口等常用算子,实现了流批一体处理,极大提高了开发效率和代码复用性。通过统一的API和语法,Flink SQL 能够灵活应对实时和离线数据分析场景,为企业提供强大的数据处理能力。

180 26
|
1月前
|
SQL 监控 关系型数据库
|

用友畅捷通在Flink上构建实时数仓、挑战与最佳实践

本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。

411 25
|
1月前
|
存储 监控 算法
|

Flink 四大基石之 Checkpoint 使用详解

Flink 的 Checkpoint 机制通过定期插入 Barrier 将数据流切分并进行快照,确保故障时能从最近的 Checkpoint 恢复,保障数据一致性。Checkpoint 分为精确一次和至少一次两种语义,前者确保每个数据仅处理一次,后者允许重复处理但不会丢失数据。此外,Flink 提供多种重启策略,如固定延迟、失败率和无重启策略,以应对不同场景。SavePoint 是手动触发的 Checkpoint,用于作业升级和迁移。Checkpoint 执行流程包括 Barrier 注入、算子状态快照、Barrier 对齐和完成 Checkpoint。

142 20
|
1月前
|
缓存 监控 数据处理
|

Flink 四大基石之窗口(Window)使用详解

在流处理场景中,窗口(Window)用于将无限数据流切分成有限大小的“块”,以便进行计算。Flink 提供了多种窗口类型,如时间窗口(滚动、滑动、会话)和计数窗口,通过窗口大小、滑动步长和偏移量等属性控制数据切分。窗口函数包括增量聚合函数、全窗口函数和ProcessWindowFunction,支持灵活的数据处理。应用案例展示了如何使用窗口进行实时流量统计和电商销售分析。

218 28
|
1月前
|
传感器 监控 数据挖掘
|

Flink 四大基石之 Time (时间语义) 的使用详解

Flink 中的时间分为三类:Event Time(事件发生时间)、Ingestion Time(数据进入系统时间)和 Processing Time(数据处理时间)。Event Time 通过嵌入事件中的时间戳准确反映数据顺序,支持复杂窗口操作。Watermark 机制用于处理 Event Time,确保数据完整性并触发窗口计算。Flink 还提供了多种迟到数据处理方式,如默认丢弃、侧输出流和允许延迟处理,以应对不同场景需求。掌握这些时间语义对编写高效、准确的 Flink 应用至关重要。

126 21
|
1月前
|
消息中间件 关系型数据库 MySQL
|

Flink CDC 在阿里云实时计算Flink版的云上实践

本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。

200 0
|
1月前
|
存储 SQL 数据挖掘
|

深入理解 Flink 中的 State

Flink 的 State(状态)是其四大核心之一,为流处理和批处理任务提供强大支持。本文深入探讨 Flink 中的状态管理,涵盖 State 在 HDFS 中的存储格式、存在形式(如 ValueState、ListState 等)、使用方法、过期时间 TTL 和清除策略,并介绍 Table API 和 SQL 模块中的状态管理。通过实际案例,帮助读者理解如何在电商订单处理、实时日志统计等场景中有效利用状态管理功能。

145 16
|
1月前
|
消息中间件 存储 Kafka
|

Fluss: First Impression

本文由Flink PMC Member徐榜江翻译自Yaroslav Tkachenko的文章《Fluss: First Impression》,介绍了阿里巴巴开源的新一代流存储系统Fluss。文章分为七个部分,涵盖Fluss简介、Table作为核心概念、PrimaryKey Table、一体化集成、Flink SQL的Delta Join、Fluss实现细节及总结。Fluss通过表结构组织数据流,支持主键表和高效的点查,深度集成LakeHouse,并计划与Flink深度集成,提供实时数据分析能力。

285 13
|
1月前
|
流计算 关系型数据库 Oracle
|

flink cdc实时同步oracle数据库到kafka报错

59 2
|
1月前
|
SQL 存储 Apache
|

基于 Flink 进行增量批计算的探索与实践

本文整理自阿里云高级技术专家、Apache Flink PMC朱翥老师在Flink Forward Asia 2024的分享,内容分为三部分:背景介绍、工作介绍和总结展望。首先介绍了增量计算的定义及其与批计算、流计算的区别,阐述了增量计算的优势及典型需求场景,并解释了为何选择Flink进行增量计算。其次,详细描述了当前的工作进展,包括增量计算流程、执行计划生成、控制消费数据量级及执行进度记录恢复等关键技术点。最后,展示了增量计算的简单示例、性能测评结果,并对未来工作进行了规划。

513 6
|
2月前
|
存储 物联网 大数据
|

探索阿里云 Flink 物化表:原理、优势与应用场景全解析

阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。

120 16
|
2月前
|
存储 SQL 大数据
|

从数据存储到分析:构建高效开源数据湖仓解决方案

今年开源大数据迈向湖仓一体(Lake House)时代,重点介绍Open Lake解决方案。该方案基于云原生架构,兼容开源生态,提供开箱即用的数据湖仓产品。其核心优势在于统一数据管理和存储,支持实时与批处理分析,打破多计算产品的数据壁垒。通过阿里云的Data Lake Formation和Apache Paimon等技术,用户可高效搭建、管理并分析大规模数据,实现BI和AI融合,满足多样化数据分析需求。

177 7
|
2月前
|
存储 人工智能 BI
|

Paimon 1.0: Unified Lake Format for Data + AI

本文整理自阿里云智能开源湖存储负责人李劲松在Flink Forward Asia 2024上海站主论坛的演讲。Apache Paimon于今年3月成为顶级项目,计划发布1.0版本,目标是Unified Lake Format for Data + AI,解决数据处理与AI应用中的关键问题。Paimon结合Flink打造Streaming Lakehouse解决方案,已在阿里巴巴集团及多个行业中广泛应用。来自淘天、抖音和vivo的嘉宾分享了基于Paimon + Flink技术栈的数据湖实时处理与分析实践案例。内容涵盖大数据从业者面临的痛点、Paimon的发展历程及大厂的应用经验。

502 1
|
2月前
|
消息中间件 JSON 数据库
|

探索Flink动态CEP:杭州银行的实战案例

本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。

540 2
|
2月前
|
存储 SQL 缓存
|

Flink 2.0 存算分离状态存储 — ForSt DB 

本文整理自阿里云技术专家兰兆千在Flink Forward Asia 2024上的分享,主要介绍Flink 2.0的存算分离架构、全新状态存储内核ForSt DB及工作进展与未来展望。Flink 2.0通过存算分离解决了本地磁盘瓶颈、检查点资源尖峰和作业恢复速度慢等问题,提升了云原生部署能力。ForSt DB作为嵌入式Key-value存储内核,支持远端读写、批量并发优化和快速检查点等功能。性能测试表明,ForSt在异步访问和本地缓存支持下表现卓越。未来,Flink将继续完善SQL Operator的异步优化,并引入更多流特性支持。

355 88
|
2月前
|
数据处理 数据安全/隐私保护 流计算
|

Flink 三种时间窗口、窗口处理函数使用及案例

Flink 是处理无界数据流的强大工具,提供了丰富的窗口机制。本文介绍了三种时间窗口(滚动窗口、滑动窗口和会话窗口)及其使用方法,包括时间窗口的概念、窗口处理函数的使用和实际案例。通过这些机制,可以灵活地对数据流进行分析和计算,满足不同的业务需求。

252 27
|
2月前
|
存储 SQL 人工智能
|

Apache Flink 2.0:Streaming into the Future

本文整理自阿里云智能高级技术专家宋辛童、资深技术专家梅源和高级技术专家李麟在 Flink Forward Asia 2024 主会场的分享。三位专家详细介绍了 Flink 2.0 的四大技术方向:Streaming、Stream-Batch Unification、Streaming Lakehouse 和 AI。主要内容包括 Flink 2.0 的存算分离云原生化、流批一体的 Materialized Table、Flink 与 Paimon 的深度集成,以及 Flink 在 AI 领域的应用。

642 13
|
2月前
|
SQL 存储 缓存
|

Flink SQL Deduplication 去重以及如何获取最新状态操作

Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。

181 14
|
2月前
|
存储 消息中间件 SQL
|

流存储Fluss:迈向湖流一体架构

本文整理自阿里云高级开发工程师罗宇侠在Flink Forward Asia 2024上海站的分享,介绍了湖流割裂的现状与挑战,Fluss湖流一体架构的设计与优势,以及未来规划。内容涵盖湖流割裂的现状、Fluss架构详解、湖流一体带来的收益,以及未来的生态扩展和技术优化。

447 11
|
2月前
|

2024FFA分论坛-流批一体1

FFA2024流批一体专场由Apache Flink核心贡献者与来自阿里云智能、小红书、哔哩哔哩、蚂蚁金服、Shopee等公司的一线技术专家聚焦于流批一体数仓的最新进展与实践,涵盖从理论探索到实际应用的全方位内容。

205 0
|
2月前
|
存储 人工智能 大数据
|

The Past, Present and Future of Apache Flink

本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。

395 33
|
2月前
|
数据格式 JSON 关系型数据库
|

mysql->flink-cdc->clickhouse数据传输不识别delete操作

112 1
|
2月前
|

2024FFA分论坛-生产实践2

FFA2024生产实践专场由Apache Flink核心贡献者与来自快手、eBay、阿里云、抖音集团、Uber、鹰角、移动云、京东、用友畅捷通、搜配云、度小满、天翼云等公司的一线技术专家带来,将聚焦于在生产中使用和部署Flink的痛点, 经验以及最佳实践, 共同探讨如何在真实环境中更高效, 安全, 敏捷地落地实时数据处理框架。

184 0
|
2月前
|

2024FFA分论坛-数据集成1

FFA2024数据集成专场由Apache Flink核心贡献者与来自阿里云智能、杭州银行、光大银行、货拉拉、数新智能、镜舟科技等公司的一线技术专家聚焦于实时技术在数据集成场景的价值与发展,讨论实时技术如何提升数据处理的全链路时效性,分析如何基于 Flink 设计实时数据集成框架,以及实时数据集成技术在不同业务领域的最佳实践。

152 0
|
2月前
|

2024FFA分论坛-数据集成2

FFA2024数据集成专场由Apache Flink核心贡献者与来自阿里云智能、杭州银行、光大银行、货拉拉、数新智能、镜舟科技等公司的一线技术专家聚焦于实时技术在数据集成场景的价值与发展,讨论实时技术如何提升数据处理的全链路时效性,分析如何基于 Flink 设计实时数据集成框架,以及实时数据集成技术在不同业务领域的最佳实践。

108 0
|
2月前
|

2024FFA分论坛-云原生

FFA2024云原生专场由Apache Flink核心贡献者与来自阿里云、网易游戏、小红书、美团、哔哩哔哩等公司的一线技术专家带来,聚焦Flink与云原生技术的结合,探讨如何在云原生环境中高效部署和深度优化Flink流批任务。通过实战经验分享,帮助开发者利用容器化、K8s、Serverless等工具,在稳定、性能、成本之间取得平衡。

164 0
|
2月前
|

2024FFA分论坛-生产实践4

FFA2024生产实践专场由Apache Flink核心贡献者与来自快手、eBay、阿里云、抖音集团、Uber、鹰角、移动云、京东、用友畅捷通、搜配云、度小满、天翼云等公司的一线技术专家带来,将聚焦于在生产中使用和部署Flink的痛点, 经验以及最佳实践, 共同探讨如何在真实环境中更高效, 安全, 敏捷地落地实时数据处理框架。

132 0
|
2月前
|

2024FFA分论坛-生产实践3

FFA2024生产实践专场由Apache Flink核心贡献者与来自快手、eBay、阿里云、抖音集团、Uber、鹰角、移动云、京东、用友畅捷通、搜配云、度小满、天翼云等公司的一线技术专家带来,将聚焦于在生产中使用和部署Flink的痛点, 经验以及最佳实践, 共同探讨如何在真实环境中更高效, 安全, 敏捷地落地实时数据处理框架。

146 0
|
2月前
|
流计算 关系型数据库 MySQL
|

flink cdc 支持同步mysql 的truncate table 语句吗

72 1
我要发布