异构计算

首页 标签 异构计算
# 异构计算 #
关注
19771内容
浅谈人工智能芯片(一)-- 深度神经网络和NVidia GPU的崛起
随着人工智能浪潮的兴起,人工智能基础芯片作为主要的计算力推动引擎也越来越受到追捧和热议,这个系列连载会介绍人工智能芯片兴起的背景和现有主要玩家以及研究现状,主要包括NVidia GPU、Google的TPU、Intel的Nervana、IBM的TreueNorth、微软的DPU和BrainWave、百度的XPU、Xilinx的xDNN、寒武纪芯片、地平线以及深鉴科技的AI芯片等。
浅析GPU通信技术(下)-GPUDirect RDMA
目录 浅析GPU通信技术(上)-GPUDirect P2P 浅析GPU通信技术(中)-NVLink 浅析GPU通信技术(下)-GPUDirect RDMA 1. 背景         前两篇文章我们介绍的GPUDirect P2P和NVLink技术可以大大提升GPU服务器单机的GPU通信性...
Python高性能计算库——Numba
在计算能力为王的时代,具有高性能计算的库正在被广泛大家应用于处理大数据。例如:Numpy,本文介绍了一个新的Python库——Numba, 在计算性能方面,它比Numpy表现的更好。
浅析GPU通信技术(上)-GPUDirect P2P
1. 背景 GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
| |
来自: 云原生
Kubeflow实战系列: 利用TFJob运行分布式TensorFlow
TensorFlow作为现在最为流行的深度学习代码库,在数据科学家中间非常流行,特别是可以明显加速训练效率的分布式训练更是杀手级的特性。但是如何真正部署和运行大规模的分布式模型训练,却成了新的挑战。
阿里云服务器配置选择方法和经验(CPU+内存+宽带)
阿里云ECS云服务器配置的选择不仅仅包括CPU核数、内存及宽带多少,还需要根据实际业务场景选择对应的规格族,云吞铺子分享阿里云服务器的选配方法和经验: 云服务器的CPU+内存选配 普通的个人小型网站,如:个人博客等小流量网站,可选择入门级配置的云服务器推荐配置:1核CPU、1G或2G内存、硬盘40G、1M或2M带宽 论坛、门户类网站:论坛、门户类网站,用户活跃性与访问量较高,为了保证足够的服务器资源空间,提升访问速度。
Ubuntu18.04LTS下cuda10.0+cudnn7.5+TensorFlow1.13环境搭建
目录 前言 开发环境一览 显卡驱动安装 下载驱动 禁用nouveau 安装驱动 安装CUDA10.0 第一个CUDA程序 安装cudnn7.5 安装TensorFlow1.13 最后 前言 之前写过cuda环境的搭建文章, 这次干脆补全整个深度学习环境的搭建.
| |
来自: 云原生
Serverless助力AI计算:阿里云ACK Serverless/ECI发布GPU容器实例
ACK Serverless(Serverless Kubernetes)近期基于ECI(弹性容器实例)正式推出GPU容器实例支持,让用户以serverless的方式快速运行AI计算任务,极大降低AI平台运维的负担,显著提升整体计算效率。
免费试用