Serverless助力AI计算:阿里云ACK Serverless/ECI发布GPU容器实例

本文涉及的产品
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: ACK Serverless(Serverless Kubernetes)近期基于ECI(弹性容器实例)正式推出GPU容器实例支持,让用户以serverless的方式快速运行AI计算任务,极大降低AI平台运维的负担,显著提升整体计算效率。

ACK Serverless(Serverless Kubernetes)近期基于ECI(弹性容器实例)正式推出GPU容器实例支持,让用户以serverless的方式快速运行AI计算任务,极大降低AI平台运维的负担,显著提升整体计算效率。

AI计算离不开GPU已经是行业共识,然而从零开始搭建GPU集群环境是件相对复杂的任务,包括GPU规格购买、机器准备、驱动安装、容器环境安装等。GPU资源的serverless交付方式,充分的展现了serverless的核心优势,其向用户提供标准化而且“开箱即用”的资源供给能力,用户无需购买机器也无需登录到节点安装GPU驱动,极大降低了AI平台的部署复杂度,让客户关注在AI模型和应用本身而非基础设施的搭建和维护,让使用GPU/CPU资源就如同打开水龙头一样简单方便,同时按需计费的方式让客户按照计算任务进行消费, 避免包年包月带来的高成本和资源浪费。

image

在ACK Serverless中创建挂载GPU的pod也非常简单,通过annotation指定所需GPU的类型,同时在resource.limits中指定GPU的个数即可(也可指定instance-type)。每个pod独占GPU,暂不支持vGPU,GPU实例的收费与ECS GPU类型收费一致,不产生额外费用,目前阿里云ECI提供如下几种规格的GPU类型:(详情请参考https://help.aliyun.com/document_detail/114581.html

vCPU 内存(GiB) GPU类型 GPU count
2 8.0 P4 1
4 16.0 P4 1
8 32.0 P4 1
16 64.0 P4 1
32 128.0 P4 2
56 224.0 P4 4
8 32.0 V100 1
32 128.0 V100 4
64 256.0 V100 8

下面让我们通过一个简单的图片识别示例,展示如何在ACK Serverless中快速进行深度学习任务的计算。

创建Serverless Kubernetes集群

image

使用tensorflow进行图片识别

image
对于我们人类此图片的识别是极其简单不过的,然而对于机器而言则不是一件轻松的事情,其中依赖大量数据的输入和模型算法的训练,下面我们将基于已有的tensorflow模型对上个图片进行识别。

在这里我们选用了tensorflow的入门示例
镜像registry-vpc.cn-hangzhou.aliyuncs.com/ack-serverless/tensorflow是基于tensorflow官方镜像tensorflow/tensorflow:1.13.1-gpu-py3构建,在里面已经下载了示例所需models仓库:https://github.com/tensorflow/models

在serverless集群控制台基于模版创建或者使用kubectl部署如下yaml文件,pod中指定GPU类型为P4,GPU个数为1。

apiVersion: v1
kind: Pod
metadata:
  name: tensorflow
  annotations:
    k8s.aliyun.com/eci-gpu-type : "P4"
spec:
  containers:
  - image: registry-vpc.cn-hangzhou.aliyuncs.com/ack-serverless/tensorflow
    name: tensorflow
    command:
    - "sh"
    - "-c"
    - "python models/tutorials/image/imagenet/classify_image.py"
    resources:
      limits:
        nvidia.com/gpu: "1"
  restartPolicy: OnFailure

创建pod等待执行完成,查看pod日志:

# kubectl get pod -a
NAME         READY     STATUS      RESTARTS   AGE
tensorflow   0/1       Completed   0          6m


# kubectl logs tensorflow
>> Downloading inception-2015-12-05.WARNING:tensorflow:From models/tutorials/image/imagenet/classify_image.py:141: __init__ (from tensorflow.python.platform.gfile) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.gfile.GFile.
2019-05-05 09:43:30.591730: W tensorflow/core/framework/op_def_util.cc:355] Op BatchNormWithGlobalNormalization is deprecated. It will cease to work in GraphDef version 9. Use tf.nn.batch_normalization().
2019-05-05 09:43:30.806869: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-05-05 09:43:31.075142: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-05-05 09:43:31.075725: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x4525ce0 executing computations on platform CUDA. Devices:
2019-05-05 09:43:31.075785: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): Tesla P4, Compute Capability 6.1
2019-05-05 09:43:31.078667: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2494220000 Hz
2019-05-05 09:43:31.078953: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x4ad0660 executing computations on platform Host. Devices:
2019-05-05 09:43:31.078980: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): <undefined>, <undefined>
2019-05-05 09:43:31.079294: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:08.0
totalMemory: 7.43GiB freeMemory: 7.31GiB
2019-05-05 09:43:31.079327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-05-05 09:43:31.081074: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-05-05 09:43:31.081104: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990]      0
2019-05-05 09:43:31.081116: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0:   N
2019-05-05 09:43:31.081379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7116 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:08.0, compute capability: 6.1)
2019-05-05 09:43:32.200163: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
>> Downloading inception-2015-12-05.tgz 100.0%
Successfully downloaded inception-2015-12-05.tgz 88931400 bytes.
giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.89107)
indri, indris, Indri indri, Indri brevicaudatus (score = 0.00779)
lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00296)
custard apple (score = 0.00147)
earthstar (score = 0.00117)

pod的日志显示模型已经成功检测到图片为panda。可以看到在整个机器学习计算过程中,我们只是运行了一个pod,当pod变成terminated状态后任务完成,没有ecs环境准备,没有购买GPU机器,没有安装Nivida GPU驱动,没有安装docker软件,计算力如同水电一样按需使用。

最后

ACK中虚拟节点也同样基于ECI实现了GPU的支持,使用方式与ACK Serverless相同(但需要把pod指定调度到虚拟节点上,或者把pod创建在有virtual-node-affinity-injection=enabled label的namespace中),基于虚拟节点的方式可以更灵活的支持多种深度学习框架,如kubeflow、arena或其他自定义CRD。

示例如下:

apiVersion: v1
kind: Pod
metadata:
  name: tensorflow
  annotations:
    k8s.aliyun.com/eci-gpu-type : "P4"
spec:
  containers:
  - image: registry-vpc.cn-hangzhou.aliyuncs.com/ack-serverless/tensorflow
    name: tensorflow
    command:
    - "sh"
    - "-c"
    - "python models/tutorials/image/imagenet/classify_image.py"
    resources:
      limits:
        nvidia.com/gpu: "1"
  restartPolicy: OnFailure
  nodeName: virtual-kubelet
相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
1月前
|
云安全 人工智能 安全
Dify平台集成阿里云AI安全护栏,构建AI Runtime安全防线
阿里云 AI 安全护栏加入Dify平台,打造可信赖的 AI
|
1月前
|
机器学习/深度学习 人工智能 Serverless
吉利汽车携手阿里云函数计算,打造新一代 AI 座舱推理引擎
当前吉利汽车研究院人工智能团队承担了吉利汽车座舱 AI 智能化的方案建设,在和阿里云的合作中,基于星睿智算中心 2.0 的 23.5EFLOPS 强大算力,构建 AI 混合云架构,面向百万级用户的实时推理计算引入阿里云函数计算的 Serverless GPU 算力集群,共同为智能座舱的交互和娱乐功能提供大模型推理业务服务,涵盖的场景如针对模糊指令的复杂意图解析、文生图、情感 TTS 等。
|
1月前
|
机器学习/深度学习 人工智能 算法
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
NBA中国与阿里云达成合作,首发360°实时回放技术,融合AI视觉引擎,实现多视角、低延时、沉浸式观赛新体验,重新定义体育赛事观看方式。
320 0
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
|
1月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。
|
弹性计算 运维 Kubernetes
阿里云ECI如何6秒扩容3000容器实例?
2021年云栖大会现场,阿里云工程师演示了在6秒时间内成功启动3000个ECI,并全部进入到Running状态。本文将为你揭开阿里云ECI是如何做到极速扩容的。
阿里云ECI如何6秒扩容3000容器实例?
|
弹性计算 安全 Serverless
[产品商业化]阿里云宣布 Serverless 容器服务 弹性容器实例 ECI 正式商业化
阿里云宣布弹性容器实例 ECI(Elastic Container Instance)正式商业化,ECI 是阿里云践行普惠的云计算理念,将 Serverless 和 Container 技术结合,提供的一款敏捷安全的Serverless容器运行服务。
3860 106
|
存储 弹性计算 负载均衡
使用阿里云 ECI 弹性部署 Fizz Gateway 节点
本文描述了如何使用阿里云的ECI快速配置弹性伸缩
607 0
|
弹性计算 人工智能 Serverless
如何在阿里云ACK上使用Arena提交ECI训练任务
使用ECI运行AI训练任务,利用比较强力的Serverless能力。本文介绍使用Arena提交在ECI上运行的分布式训练任务的流程。
439 0
|
存储 弹性计算 运维
最佳实践丨阿里云ECI如何助力西软构建酒店行业多租户高弹性PaaS平台?
酒店行业24小时营业特征和季节性突发业务高峰给信息化管理系统带来了怎样的挑战?阿里云的ECI产品又是如何助力西软构建酒店行业多租户高弹性PaaS平台?让我们一步步揭开谜底
最佳实践丨阿里云ECI如何助力西软构建酒店行业多租户高弹性PaaS平台?
|
Java 程序员 Android开发
1月3日云栖精选夜读 | 阿里云宣布进入 Serverless 容器时代,推出弹性容器实例服务 ECI
阿里云宣布弹性容器实例 ECI(Elastic Container Instance)正式商业化。
4441 1

相关产品

  • 函数计算
  • 推荐镜像

    更多