介绍
本系列将介绍如何在阿里云容器服务上运行Kubeflow, 本文介绍如何使用TfJob
运行分布式模型训练。
- 第一篇:阿里云上使用JupyterHub
- 第二篇:阿里云上小试TFJob
- 第三篇:利用TFJob运行分布式TensorFlow
- 第四篇:利用TFJob导出分布式TensorFlow模型
- 第五篇:利用TensorFlow Serving进行模型预测
TensorFlow分布式训练和Kubernetes
TensorFlow
作为现在最为流行的深度学习代码库,在数据科学家中间非常流行,特别是可以明显加速训练效率的分布式训练更是杀手级的特性。但是如何真正部署和运行大规模的分布式模型训练,却成了新的挑战。 实际分布式TensorFLow的使用者需要关心3件事情。
- 寻找足够运行训练的资源,通常一个分布式训练需要若干数量的worker(运算服务器)和ps(参数服务器),而这些运算成员都需要使用计算资源。
- 安装和配置支撑程序运算的软件和应用
- 根据分布式TensorFlow的设计,需要配置ClusterSpec。这个json格式的ClusterSpec是用来描述整个分布式训练集群的架构,比如需要使用两个worker和ps,
ClusterSpec
应该长成下面的样子,并且分布式训练中每个成员都需要利用这个ClusterSpec
初始化tf.train.ClusterSpec
对象,建立集群内部通信
cluster = tf.train.ClusterSpec({"worker": ["<VM_1>:2222",
"<VM_2>:2222"],
"ps": ["<IP_VM_1>:2223",
"<IP_VM_2>:2223"]})
其中第一件事情是Kubernetes资源调度非常擅长的事情,无论CPU和GPU调度,都是直接可以使用;而第二件事情是Docker擅长的,固化和可重复的操作保存到容器镜像。而自动化的构建ClusterSpec
是TFJob
解决的问题,让用户通过简单的集中式配置,完成TensorFlow分布式集群拓扑的构建。
应该说烦恼了数据科学家很久的分布式训练问题,通过Kubernetes+TFJob的方案可以得到比较好的解决。
利用Kubernetes和TFJob部署分布式训练
- 修改TensorFlow分布式训练代码
之前在阿里云上小试TFJob一文中已经介绍了TFJob
的定义,这里就不再赘述了。可以知道TFJob
里有的角色类型为MASTER
, WORKER
和 PS
。
举个现实的例子,假设从事分布式训练的TFJob
叫做distributed-mnist
, 其中节点有1个MASTER
, 2个WORKERS
和2个PS
,ClusterSpec
对应的格式如下所示:
{
"master":[
"distributed-mnist-master-0:2222"
],
"ps":[
"distributed-mnist-ps-0:2222",
"distributed-mnist-ps-1:2222"
],
"worker":[
"distributed-mnist-worker-0:2222",
"distributed-mnist-worker-1:2222"
]
}
而tf_operator
的工作就是创建对应的5个Pod, 并且将环境变量TF_CONFIG
传入到每个Pod中,TF_CONFIG
包含三部分的内容,当前集群ClusterSpec
, 该节点的角色类型,以及id。比如该Pod为worker0,它所收到的环境变量TF_CONFIG
为:
{
"cluster":{
"master":[
"distributed-mnist-master-0:2222"
],
"ps":[
"distributed-mnist-ps-0:2222"
],
"worker":[
"distributed-mnist-worker-0:2222",
"distributed-mnist-worker-1:2222"
]
},
"task":{
"type":"worker",
"index":0
},
"environment":"cloud"
}
在这里,tf_operator
负责将集群拓扑的发现和配置工作完成,免除了使用者的麻烦。对于使用者来说,他只需要在这里代码中使用通过获取环境变量TF_CONFIG
中的上下文。
这意味着,用户需要根据和TFJob
的规约修改分布式训练代码:
# 从环境变量TF_CONFIG中读取json格式的数据
tf_config_json = os.environ.get("TF_CONFIG", "{}")
# 反序列化成python对象
tf_config = json.loads(tf_config_json)
# 获取Cluster Spec
cluster_spec = tf_config.get("cluster", {})
cluster_spec_object = tf.train.ClusterSpec(cluster_spec)
# 获取角色类型和id, 比如这里的job_name 是 "worker" and task_id 是 0
task = tf_config.get("task", {})
job_name = task["type"]
task_id = task["index"]
# 创建TensorFlow Training Server对象
server_def = tf.train.ServerDef(
cluster=cluster_spec_object.as_cluster_def(),
protocol="grpc",
job_name=job_name,
task_index=task_id)
server = tf.train.Server(server_def)
# 如果job_name为ps,则调用server.join()
if job_name == 'ps':
server.join()
# 检查当前进程是否是master, 如果是master,就需要负责创建session和保存summary。
is_chief = (job_name == 'master')
# 通常分布式训练的例子只有ps和worker两个角色,而在TFJob里增加了master这个角色,实际在分布式TensorFlow的编程模型并没有这个设计。而这需要使用TFJob的分布式代码里进行处理,不过这个处理并不复杂,只需要将master也看做worker_device的类型
with tf.device(tf.train.replica_device_setter(
worker_device="/job:{0}/task:{1}".format(job_name,task_id),
cluster=cluster_spec)):
具体代码可以参考示例代码
2. 在本例子中,将演示如何使用TFJob
运行分布式训练,并且将训练结果和日志保存到NAS存储上,最后通过Tensorboard读取训练日志。
2.1 创建NAS数据卷,并且设置与当前Kubernetes集群的同一个具体vpc的挂载点。操作详见文档
2.2 在NAS上创建 /training
的数据文件夹, 下载mnist训练所需要的数据
mkdir -p /nfs
mount -t nfs -o vers=4.0 xxxxxxx.cn-hangzhou.nas.aliyuncs.com:/ /nfs
mkdir -p /nfs/training
umount /nfs
2.3 创建NAS的PV, 以下为示例nas-dist-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: kubeflow-dist-nas-mnist
labels:
tfjob: kubeflow-dist-nas-mnist
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteMany
storageClassName: nas
flexVolume:
driver: "alicloud/nas"
options:
mode: "755"
path: /training
server: xxxxxxx.cn-hangzhou.nas.aliyuncs.com
vers: "4.0"
将该模板保存到nas-dist-pv.yaml
, 并且创建pv
:
# kubectl create -f nas-dist-pv.yaml
persistentvolume "kubeflow-dist-nas-mnist" created
2.4 利用nas-dist-pvc.yaml
创建PVC
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: kubeflow-dist-nas-mnist
spec:
storageClassName: nas
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi
selector:
matchLabels:
tfjob: kubeflow-dist-nas-mnist
具体命令:
# kubectl create -f nas-dist-pvc.yaml
persistentvolumeclaim "kubeflow-dist-nas-mnist" created
2.5 创建TFJob
apiVersion: kubeflow.org/v1alpha1
kind: TFJob
metadata:
name: mnist-simple-gpu-dist
spec:
replicaSpecs:
- replicas: 1 # 1 Master
tfReplicaType: MASTER
template:
spec:
containers:
- image: registry.aliyuncs.com/tensorflow-samples/tf-mnist-distributed:gpu
name: tensorflow
env:
- name: TEST_TMPDIR
value: /training
command: ["python", "/app/main.py"]
resources:
limits:
nvidia.com/gpu: 1
volumeMounts:
- name: kubeflow-dist-nas-mnist
mountPath: "/training"
volumes:
- name: kubeflow-dist-nas-mnist
persistentVolumeClaim:
claimName: kubeflow-dist-nas-mnist
restartPolicy: OnFailure
- replicas: 1 # 1 or 2 Workers depends on how many gpus you have
tfReplicaType: WORKER
template:
spec:
containers:
- image: registry.aliyuncs.com/tensorflow-samples/tf-mnist-distributed:gpu
name: tensorflow
env:
- name: TEST_TMPDIR
value: /training
command: ["python", "/app/main.py"]
imagePullPolicy: Always
resources:
limits:
nvidia.com/gpu: 1
volumeMounts:
- name: kubeflow-dist-nas-mnist
mountPath: "/training"
volumes:
- name: kubeflow-dist-nas-mnist
persistentVolumeClaim:
claimName: kubeflow-dist-nas-mnist
restartPolicy: OnFailure
- replicas: 1 # 1 Parameter server
tfReplicaType: PS
template:
spec:
containers:
- image: registry.aliyuncs.com/tensorflow-samples/tf-mnist-distributed:cpu
name: tensorflow
command: ["python", "/app/main.py"]
env:
- name: TEST_TMPDIR
value: /training
imagePullPolicy: Always
volumeMounts:
- name: kubeflow-dist-nas-mnist
mountPath: "/training"
volumes:
- name: kubeflow-dist-nas-mnist
persistentVolumeClaim:
claimName: kubeflow-dist-nas-mnist
restartPolicy: OnFailure
将该模板保存到mnist-simple-gpu-dist.yaml
, 并且创建分布式训练的TFJob
:
# kubectl create -f mnist-simple-gpu-dist.yaml
tfjob "mnist-simple-gpu-dist" created
检查所有运行的Pod
# RUNTIMEID=$(kubectl get tfjob mnist-simple-gpu-dist -o=jsonpath='{.spec.RuntimeId}')
# kubectl get po -lruntime_id=$RUNTIMEID
NAME READY STATUS RESTARTS AGE
mnist-simple-gpu-dist-master-z5z4-0-ipy0s 1/1 Running 0 31s
mnist-simple-gpu-dist-ps-z5z4-0-3nzpa 1/1 Running 0 31s
mnist-simple-gpu-dist-worker-z5z4-0-zm0zm 1/1 Running 0 31s
查看master的日志,可以看到ClusterSpec
已经成功的构建出来了
# kubectl logs -l runtime_id=$RUNTIMEID,job_type=MASTER
2018-06-10 09:31:55.342689: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1105] Found device 0 with properties:
name: Tesla P100-PCIE-16GB major: 6 minor: 0 memoryClockRate(GHz): 1.3285
pciBusID: 0000:00:08.0
totalMemory: 15.89GiB freeMemory: 15.60GiB
2018-06-10 09:31:55.342724: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:08.0, compute capability: 6.0)
2018-06-10 09:31:55.805747: I tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:215] Initialize GrpcChannelCache for job master -> {0 -> localhost:2222}
2018-06-10 09:31:55.805786: I tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:215] Initialize GrpcChannelCache for job ps -> {0 -> mnist-simple-gpu-dist-ps-m5yi-0:2222}
2018-06-10 09:31:55.805794: I tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:215] Initialize GrpcChannelCache for job worker -> {0 -> mnist-simple-gpu-dist-worker-m5yi-0:2222}
2018-06-10 09:31:55.807119: I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:324] Started server with target: grpc://localhost:2222
...
Accuracy at step 900: 0.9709
Accuracy at step 910: 0.971
Accuracy at step 920: 0.9735
Accuracy at step 930: 0.9716
Accuracy at step 940: 0.972
Accuracy at step 950: 0.9697
Accuracy at step 960: 0.9718
Accuracy at step 970: 0.9738
Accuracy at step 980: 0.9725
Accuracy at step 990: 0.9724
Adding run metadata for 999
2.6 部署TensorBoard,并且查看训练效果
为了更方便 TensorFlow
程序的理解、调试与优化,可以用 TensorBoard
来观察 TensorFlow
训练效果,理解训练框架和优化算法, 而TensorBoard通过读取TensorFlow的事件日志获取运行时的信息。
在之前的分布式训练样例中已经记录了事件日志,并且保存到文件events.out.tfevents*
中
# tree
.
└── tensorflow
├── input_data
│ ├── t10k-images-idx3-ubyte.gz
│ ├── t10k-labels-idx1-ubyte.gz
│ ├── train-images-idx3-ubyte.gz
│ └── train-labels-idx1-ubyte.gz
└── logs
├── checkpoint
├── events.out.tfevents.1528760350.mnist-simple-gpu-dist-master-fziz-0-74je9
├── graph.pbtxt
├── model.ckpt-0.data-00000-of-00001
├── model.ckpt-0.index
├── model.ckpt-0.meta
├── test
│ ├── events.out.tfevents.1528760351.mnist-simple-gpu-dist-master-fziz-0-74je9
│ └── events.out.tfevents.1528760356.mnist-simple-gpu-dist-worker-fziz-0-9mvsd
└── train
├── events.out.tfevents.1528760350.mnist-simple-gpu-dist-master-fziz-0-74je9
└── events.out.tfevents.1528760355.mnist-simple-gpu-dist-worker-fziz-0-9mvsd
5 directories, 14 files
在Kubernetes部署TensorBoard
, 并且指定之前训练的NAS存储
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
app: tensorboard
name: tensorboard
spec:
replicas: 1
selector:
matchLabels:
app: tensorboard
template:
metadata:
labels:
app: tensorboard
spec:
volumes:
- name: kubeflow-dist-nas-mnist
persistentVolumeClaim:
claimName: kubeflow-dist-nas-mnist
containers:
- name: tensorboard
image: tensorflow/tensorflow:1.7.0
imagePullPolicy: Always
command:
- /usr/local/bin/tensorboard
args:
- --logdir
- /training/tensorflow/logs
volumeMounts:
- name: kubeflow-dist-nas-mnist
mountPath: "/training"
ports:
- containerPort: 6006
protocol: TCP
dnsPolicy: ClusterFirst
restartPolicy: Always
将该模板保存到tensorboard.yaml
, 并且创建tensorboard
:
# kubectl create -f tensorboard.yaml
deployment "tensorboard" created
TensorBoard创建成功后,通过kubectl port-forward
命令进行访问
PODNAME=$(kubectl get pod -l app=tensorboard -o jsonpath='{.items[0].metadata.name}')
kubectl port-forward ${PODNAME} 6006:6006
通过http://127.0.0.1:6006
登录TensorBoard
,查看分布式训练的模型和效果:
总结
利用tf-operator
可以解决分布式训练的问题,简化数据科学家进行分布式训练工作。同时使用Tensorboard查看训练效果, 再利用NAS或者OSS来存放数据和模型,这样一方面有效的重用训练数据和保存实验结果,另外一方面也是为模型预测的发布做准备。如何把模型训练,验证,预测串联起来构成机器学习的工作流(workflow), 也是Kubeflow的核心价值,我们在后面的文章中也会进行介绍。