JAX性能优化实战:7个变换让TPU/GPU吃满算力
JAX性能提升七技巧:jit稳定形状、vmap替代循环、scan融合长序列、remat用计算换内存、pmap单机多卡、pjit实现SPMD并行、value_and_grad正确组合。配合分片与aux输出,最大化XLA优化,提升计算效率。
探索热辐射:红外发射率的调控艺术与应用(隐身篇)
红外辐射无处不在,物体通过热辐射在空气中传播红外线,而8~14μm等“大气窗口”波段可被探测。红外热成像仪利用温度差异生成图像,广泛应用于军事侦察。实现红外隐身需降低辐射强度,主要途径包括调控发射率、控制温度及阻隔传播。低发射率涂层、隔热材料、相变材料(如VO₂)、超材料与仿生设计等技术不断发展,推动智能、多频谱兼容隐身材料研发。EM10便携式测量仪实现3-5μm与8-14μm双波段同步高精度检测,助力材料研发与现场质量监控,促进红外隐身技术向高效、协同、实用化方向迈进。
04_昇腾推荐系统:单双层架构解析
单双层架构互补共存:单层追求极致性能,适用于小规模特征;双层突破内存瓶颈,支持大规模扩展。结合动态扩容、准入淘汰与高效查表,实现推荐系统大规模稀疏参数的高效训练与管理。
05_推荐系统准入与淘汰策略技术详解
本文详解推荐系统多级缓存中的准入淘汰策略,涵盖基于访问频次、概率、ShowClick等准入机制,以及基于时间、L2范数、频次等淘汰机制,结合CPU-PS控制流程与NPU执行优化,实现缓存资源高效利用,提升模型训练效率与推荐精度。
07_昇腾嵌入表性能提升
本文介绍嵌入表性能优化的六大策略:多流并行掩盖通信延迟,Pin Memory加速数据传输,两级去重减少计算冗余,通信模式优化降低开销,梯度累积节省内存,并结合实验验证效果,全面提升训练效率与资源利用率。
06_昇腾流水线优化技术详解
本文详解昇腾流水线优化技术,涵盖NPU与GPU侧多级流水实现。通过Stage划分、异步调度与计算通信重叠,提升训练吞吐与硬件利用率。NPU基于Rec SDK实现五阶段流水,支持动态换入换出;GPU则利用CUDA Stream构建StagedTrainPipeline,实现高效prefetch与梯度更新协同。
03_嵌入表分片与哈希管理:支撑万亿参数的关键技术
本文介绍支撑万亿参数推荐系统的核心技术:嵌入表分片与哈希管理。通过单/双层Hash模式实现稀疏ID高效映射,结合分桶策略均匀分配数据;采用Row-Wise、Table-Wise等分片机制,优化存储与计算负载,提升大规模模型训练效率。
02_昇腾推荐系统架构解析:嵌入表存储到多级缓存的全链路设计
昇腾推荐系统采用多级缓存架构,基于达芬奇架构NPU实现HBM与DDR协同的Embedding存储。通过FastHashMap与动态Swap机制,结合LRU/LFU准入淘汰策略,支持大规模稀疏特征高效训练。软件层面深度适配TorchRec,提供统一接口,实现计算与通信重叠,提升端到端性能,适用于电商、短视频等大模型推荐场景。