AI芯片

首页 标签 AI芯片
# AI芯片 #
关注
1309内容
智创 AI 新视界 -- 提升 AI 推理速度的高级方法(16 - 2)
本文深度聚焦提升 AI 推理速度,全面阐述模型压缩(低秩分解、参数量化)、硬件加速(GPU、TPU)及推理算法优化(剪枝感知推理、动态批处理)。结合图像识别等多领域案例与丰富代码示例,以生动形象且专业严谨的方式,为 AI 从业者提供极具价值的技术指南,助力突破 AI 推理速度瓶颈,实现系统性能跃升。
|
17天前
|
飞桨x昇腾生态适配方案:14_loop算子缺失(上):ONNX模型拆分
本文针对NPU不支持LOOP算子的问题,提出一种解决方案:将ONNX模型拆分为含LOOP算子和不含LOOP算子的子图,单独推理LOOP部分。通过构造包含LOOP算子的ONNX模型,将其转换为JSON格式提取子图,并对子图进行修改(如添加输入节点、删除无关节点)。最后,将JSON转回ONNX格式,完成模型切分与优化。此方法适用于关键路径上的LOOP算子,可有效解决离线推理中的兼容性问题。
|
17天前
|
飞桨x昇腾生态适配方案:07_性能数据分析
本文介绍了性能调优的全流程,包括分析、定位与优化。通过 profiling 工具采集算子级性能数据,定位计算与调度通信瓶颈。针对计算时间过长问题,可通过升级算子或提交工单解决;调度优化则关注重复编译,关闭在线编译或使用 aclnn 算子可提升效率。数据采集使用 paddlepaddle 的 profiler 工具,结合 msprof 解析生成的性能数据,重点分析 op_statistic_*.csv 和 op_summary_*.csv 文件,通过关键字段(如 Ratio、Total Time、Task Duration 和 Task Wait Time)量化性能瓶颈并实施优化策略。
|
17天前
|
飞桨x昇腾生态适配方案:03_模型训练迁移
本案例以PaddleOCRv4模型为例,详细介绍了将模型迁移到NPU的完整流程。迁移过程中需确保模型功能在新硬件上无误,重点关注偶发性错误及长时间运行时可能出现的问题,并通过日志辅助定位问题。文档涵盖环境搭建、数据集准备、模型配置、训练启动及常见问题排查等内容。例如,通过设置环境变量排查缺失算子,处理Paddle版本兼容性问题,以及解决进程残留等。适合希望将OCR模型部署到NPU的开发者参考。
|
17天前
|
飞桨x昇腾生态适配方案:05_算子适配流程
本内容主要介绍Paddle针对非CPU和Nvidia GPU硬件(如NPU)的适配流程与方法。适配代码存于PaddleCustomDevice仓库,路径为`PaddleCustomDevice/backends/npu`,包含kernels(算子适配)和tests(单元测试)两个核心目录。适配流程分为算子注册、适配函数入参与主体实现三步,重点对齐Paddle与CANN算子参数。
|
17天前
|
飞桨x昇腾生态适配方案:06_算子适配举例
本节详细解析了Paddle-API与CANN-Kernel之间的差异及适配策略,涵盖三种主要场景:参数缺失或不对应、数据类型不匹配以及layout转换。针对不同问题提出具体解决方案,如通过默认赋值或计算补充参数、使用`Cast`操作转换数据类型、借助`Transpose`调整数据布局等。同时,以ReluGrad和nll_loss算子为例,深入说明参数对齐、数据类型转换及转置操作的实现流程,为开发者提供清晰的适配指导。
|
17天前
|
飞桨x昇腾生态适配方案:04_模型精度对齐
本文详细介绍了模型在不同硬件(如GPU与NPU)间迁移时的精度对齐方法,包括前向和反向对齐的具体步骤。前向对齐通过模块化对比计算结果(如平均值、最大最小值等),确保误差在合理范围内;反向对齐则聚焦于梯度差异,利用二分法定位问题算子。同时,文章结合PPHGNet_small和MultiHead等具体模块代码,说明了如何打印输出并分析中间结果。此外,还探讨了私有格式、梯度异常及特殊shape等可能影响精度的因素,并提出相应解决策略。整体流程清晰,为跨硬件模型迁移提供了实用指导。
|
17天前
|
飞桨x昇腾生态适配方案:08_性能调优方法
本文主要探讨性能优化中的问题定界与解决方法,针对计算时间和调度时间两方面展开分析。对于计算时间长的问题,可能源于算子运行在 AI_CPU 或使用较慢的 aclop 算子,可通过数据类型转换、切换至 aclnn 算子或优化底层算子来改善。调度时间长则常因算子运行在 CPU、重复编译或通讯耗时过多引起,可采取算子适配优化、减少编译次数及避免冗余 copy 操作等手段解决。此外,文章还介绍了适配层优化策略,包括未注册算子排查、重复编译优化以及通过更换算子、调整数据类型和引入融合算子提升性能。
|
17天前
|
飞桨x昇腾生态适配方案:02_常用环境变量
本节介绍训练前建议设置的常用环境变量,涵盖NPU私有格式、在线编译、性能优化参数(如`aclnn_scale`和`aclnn_split`)、算子黑名单配置、NPU卡号指定、Paddle内存分配策略及日志设置等内容。通过合理配置这些变量,可有效提升训练性能并解决潜在问题。例如,关闭`FLAGS_npu_storage_format`以禁用NPU私有格式,或调整`ASCEND_MAX_OP_CACHE_SIZE`优化Kernel缓存大小。同时,CANN和Paddle的日志环境变量也提供了调试支持。
|
17天前
|
飞桨x昇腾生态适配方案:00_整体方案介绍
本文详细介绍PaddlePaddle与NPU的适配工作,涵盖训练与推理支持、性能优化及离线推理方案。PaddleCustomDevice作为适配层,支持主流模型(详见飞桨-昇腾模型列表),多数性能媲美V100,部分调优模型接近0.8*A800。硬件适配主要针对A2芯片,A1兼容但310系列建议离线推理。提供常用模型仓链接及整体方案导览,包括环境准备、算子适配、性能调优和Paddle转ONNX/OM等内容。
免费试用