机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71643内容
清华大学刘知远:在深度学习时代用HowNet搞事情
2017 年 12 月底,清华大学张钹院士做了一场题为《AI 科学突破的前夜,教授们应当看到什么?》的精彩特邀报告。他认为,处理知识是人类所擅长的,而处理数据是计算机所擅长的,如果能够将二者结合起来,一定能够构建出比人类更加智能的系统。
专访HDFS committer Intel 研发经理郑锴:EC之后,HDFS下一步新思考
在作为HDFS诞生以来的最大改进——支持了纠删码(erasure coding)之后,面对这个比较完善但并不十全十美的方案,面对Hadoop开源生态,HDFS的下一步将走向何处呢?
深度语义模型以及在淘宝搜索中的应用
传统的搜索文本相关性模型,如BM25通常计算Query与Doc文本term匹配程度。由于Query与Doc之间的语义gap, 可能存在很多语义相关,但文本并不匹配的情况。为了解决语义匹配问题,出现很多LSA,LDA等语义模型。
| |
来自: 云原生
阿里云Kubernetes 1.9上利用Helm玩转TensorFlow模型预测
TensorFlow Serving是Google开源的机器学习模型预测系统,能够简化并加速从模型到生产应用的过程。 它实际上也是一个在线服务,我们需要考虑它的部署时刻的安装配置,运行时刻的负载均衡,弹性伸缩,高可用性以及滚动升级等问题,幸运的是这正是Kubernetes擅长的地方。
资深数据科学家教你如何在求职过程中找到心仪的工作
本文是一篇关于数据科学家岗位的求职心路历程,情真意切,给予求职过程很多的建议,对于参加秋招和社招的朋友来说,是一份不可多得的心得。
Let's Fork | 11 款 Github 最新「机器学习」开源项目
Detectron 开源目标检测平台 Detectron 是 Facebook 开源的目标检测库,基于 Caffe2,整合了包括 Mask R-CNN 和 Focal Loss for Dense Object Detection 等顶尖目标检测算法。
场景文本检测—CTPN算法介绍
涉及到了图像中位置信息的选择,很容易联想到之前用于目标检测的R-CNN的模型。毕竟CNN(Convolutional Neural Network)在这两年的图像处理上一枝独秀已经“深入人心”。那么把“字符位置”标记成一类,然后直接放入CNN模型处理岂不美哉?不过,现实总不会这么美好,文字的多种情况、字体,以及大面积的文字信息的位置,都对我们直接用R-CNN的方法产生了干扰,让结果产生严重的偏差。
| |
来自: 云原生
在阿里云上轻松部署Kubernetes GPU集群,遇见TensorFlow
Kubernetes在版本1.6后正式加入了Nvidia GPU的调度功能,支持在Kubernetes上运行运行和管理基于GPU的应用。而在2017年9月12日,阿里云发布了新的异构计算类型GN5,基于P100 nvidia GPU, 提供灵活强悍的异构计算模型,从基础设施到部署环境全面升级,可有效提升矩阵运算、视频识别、机器学习、搜索排序等处理计算效率。
当 AI 掌握「读心术」:DeepMind AI 已经学会相互理解
「心智理论」一直被认为是人工智能无法掌握的能力,然而在 DeepMind 发表的论文《Machine Theory of Mind》中,研究人员提出了一种新型神经网络 ToMnet,具备理解自己以及周围智能体心理状态的能力。
免费试用