清华大学刘知远:在深度学习时代用HowNet搞事情
2017 年 12 月底,清华大学张钹院士做了一场题为《AI 科学突破的前夜,教授们应当看到什么?》的精彩特邀报告。他认为,处理知识是人类所擅长的,而处理数据是计算机所擅长的,如果能够将二者结合起来,一定能够构建出比人类更加智能的系统。
深度语义模型以及在淘宝搜索中的应用
传统的搜索文本相关性模型,如BM25通常计算Query与Doc文本term匹配程度。由于Query与Doc之间的语义gap, 可能存在很多语义相关,但文本并不匹配的情况。为了解决语义匹配问题,出现很多LSA,LDA等语义模型。
场景文本检测—CTPN算法介绍
涉及到了图像中位置信息的选择,很容易联想到之前用于目标检测的R-CNN的模型。毕竟CNN(Convolutional Neural Network)在这两年的图像处理上一枝独秀已经“深入人心”。那么把“字符位置”标记成一类,然后直接放入CNN模型处理岂不美哉?不过,现实总不会这么美好,文字的多种情况、字体,以及大面积的文字信息的位置,都对我们直接用R-CNN的方法产生了干扰,让结果产生严重的偏差。
在阿里云上轻松部署Kubernetes GPU集群,遇见TensorFlow
Kubernetes在版本1.6后正式加入了Nvidia GPU的调度功能,支持在Kubernetes上运行运行和管理基于GPU的应用。而在2017年9月12日,阿里云发布了新的异构计算类型GN5,基于P100 nvidia GPU, 提供灵活强悍的异构计算模型,从基础设施到部署环境全面升级,可有效提升矩阵运算、视频识别、机器学习、搜索排序等处理计算效率。