机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71593内容
基于Keras的LSTM多变量时间序列预测
还在为设计多输入变量的神经网络模型发愁?来看看大神如何解决基于Keras的LSTM多变量时间序列预测问题!文末附源码!
【深度学习之美】一入侯门“深”似海,深度学习深几许(入门系列之一)
当你和女朋友在路边手拉手一起约会的时候,你可曾想,你们之间早已碰撞出了一种神秘的智慧–深度学习。恋爱容易,相处不易,不断磨合,打造你们的默契,最终才能决定你们是否在一起。深度学习也一样,输入各种不同的参数,进行训练拟合,最后输出拟合结果。 恋爱又不易,且学且珍惜!
一文读懂「Attention is All You Need」| 附代码实现
前言 2017 年中,有两篇类似同时也是笔者非常欣赏的论文,分别是 FaceBook 的 Convolutional Sequence to Sequence Learning 和 Google 的 Attention is All You Need,它们都算是 Seq2Seq 上的创新,本质上来说,都是抛弃了 RNN 结构来做 Seq2Seq 任务。
【玩转数据系列十】利用阿里云机器学习在深度学习框架下实现智能图片分类
伴随着今日阿里云机器学习PAI在云栖大会的重磅发布,快来感受下人工智能的魅力。 一、背景 随着互联网的发展,产生了大量的图片以及语音数据,如何对这部分非结构化数据行之有效的利用起来,一直是困扰数据挖掘工程师的一到难题。
9行Python代码搭建神经网络来掌握一些基本概念
这里的“用Python”指的就是不用那些现成的神经网络库比如Keras、Tensorflow等,本文会解释这个神经网络是怎样炼成的,也会提供一个加长版、但是也更漂亮的源代码。
机器学习在高德起点抓路中的应用实践 | 7月18号云栖夜读
今天的首篇文章,讲述了:高德地图作为中国领先的出行领域解决方案提供商,导航是其核心用户场景。路线规划作为导航的前提,是根据起点、终点以及路径策略设置,为用户量身定制出行方案。起点抓路,作为路线规划的初始必备环节,其准确率对于路线规划质量及用户体验至关重要。
【深度学习之美】BP算法双向传,链式求导最缠绵(入门系列之八)
说到BP(Back Propagation)算法,人们通常强调的是反向传播,其实它是一个双向算法:正向传播输入信号,反向传播误差信息。接下来,你将看到的,可能是史上最为通俗易懂的BP图文讲解,不信?来瞅瞅并吐吐槽呗!
简单易学!一步步带你理解机器学习算法——马尔可夫链蒙特卡罗(MCMC)
对于简单的分布,很多的编程语言都能实现。但对于复杂的分布,是不容易直接抽样的。马尔可夫链蒙特卡罗算法解决了不能通过简单抽样算法进行抽样的问题,是一种实用性很强的抽样算法。本文将简明清晰地讲解马尔可夫链蒙特卡罗算法,带你理解它。
免费试用