在阿里云上轻松部署Kubernetes GPU集群,遇见TensorFlow-阿里云开发者社区

开发者社区> 阿里云容器服务 ACK> 正文
登录阅读全文

在阿里云上轻松部署Kubernetes GPU集群,遇见TensorFlow

简介: Kubernetes在版本1.6后正式加入了Nvidia GPU的调度功能,支持在Kubernetes上运行运行和管理基于GPU的应用。而在2017年9月12日,阿里云发布了新的异构计算类型GN5,基于P100 nvidia GPU, 提供灵活强悍的异构计算模型,从基础设施到部署环境全面升级,可有效提升矩阵运算、视频识别、机器学习、搜索排序等处理计算效率。

Kubernetes在版本1.6后正式加入了Nvidia GPU的调度功能,支持在Kubernetes上运行运行和管理基于GPU的应用。而在2017年9月12日,阿里云发布了新的异构计算类型GN5,基于P100 nvidia GPU, 提供灵活强悍的异构计算模型,从基础设施到部署环境全面升级,可有效提升矩阵运算、视频识别、机器学习、搜索排序等处理计算效率。当Kubernetes和GPU在阿里云上相遇,会有什么样美好的事情发生呢?

在阿里云的GN5上部署一套支持GPU的Kubernetes集群是非常简单的,利用ROS模板一键部署,将阿里云强大的计算能力便捷的输送到您的手中。不出10分钟,您就可以开始在阿里云的Kubernetes集群上开始您的Kubernetes+GPU+TensorFlow的深度学习之旅了。

前提准备

  • 您需要开通容器服务、资源编排(ROS)服务和访问控制(RAM)服务。
    登录 容器服务管理控制台ROS 管理控制台RAM 管理控制台 开通相应的服务。
  • 所创建的资源均为按量付费,根据阿里云的计费要求,请确保您的现金账户余额不少于 100 元。
  • 目前,按量付费的异构计算gn5需要申请工单开通。 请登录阿里云账号后 ,按照如下内容提交 ECS 工单
我需要申请按量付费的GPU计算型gn5,请帮忙开通,谢谢。

当审批通过后,您就可以在 ECS控制台按量付费 的计费方式下查看GPU节点是否可用。

使用限制

目前仅支持华北2(北京),华东2(上海)和华南1(深圳)创建Kubernetes的GPU集群。

集群部署

在本文中, 我们提供了部署单Master节点,并可以配置worker的节点数,同时可以按需扩容和缩容,创建和销毁集群也是非常简单的。

  1. 选择ROS创建入口
  • 单击此处创建一个位于华北2的GPU Kubernetes集群
  • 单击此处创建一个位于华东2的GPU Kubernetes集群
  • 单击此处创建一个位于华南1的GPU Kubernetes集群

2. 填写参数并单击 创建

  • 栈名:所部署的 Kubernetes 集群属于一个 ROS 的栈,栈名称在同一个地域内不能重复。
  • 创建超时:整个部署过程的超时时间,默认为 60 分钟,无需修改。
  • 失败回滚:选择 失败回滚 时,如果部署过程中发生不可自动修复性错误,将删除所有已创建资源;反之,已创建资源将被保留,以便进行问题排查。
  • Master节点ECS实例规格:指定 Master 节点所运行的 ECS 实例的规格,默认为 ecs.n4.large。
  • Worker节点ECS实例规格:指定 Worker 节点所运行的包含GPU的 ECS 实例规格,默认为 ecs.gn5-c4g1.xlarge。具体配置可以查看ECS规格文档
  • 部署GPU节点的可用区:指定 GPU节点可以部署的可用区,请根据具体地域选择。
  • ECS系统镜像:目前指定 centos_7。
  • Worker节点数:指定 Worker 节点数,默认为 2,支持后期扩容。
  • ECS登录密码:所创建的 ECS 实例可通过此密码登录,请务必牢记密码。

3. 单击 创建, 启动部署

这样,部署请求已经成功提交。 可以单击 进入事件列表 实时监控部署过程

4. 点击概览查看,部署完成后的输出结果

通过输出结果中返回的信息,可以对 Kubernetes 集群进行管理:

  • APIServer_Internet:Kubernetes 的 API server 对公网提供服务的地址和端口,可以通过此服务在用户终端使用 kubectl 等工具管理集群。
  • AdminGateway:可以直接通过 SSH 登录到 Master 节点,以便对集群进行日常维护。
  • APIServer_Intranet:Kubernetes 的 API server 对集群内部提供服务的地址和端口。

5. 通过通过 kubectl 连接 Kubernetes 集群 , 并且通过命令查看GPU节点

kubectl describe  node {node-name}
Name:            cn-beijing.i-{name}
Role:
...
Addresses:
  InternalIP:    192.168.2.74
Capacity:
 alpha.kubernetes.io/nvidia-gpu:    1
 cpu:                    4
 memory:                30717616Ki
 pods:                    110
Allocatable:
 alpha.kubernetes.io/nvidia-gpu:    1
 cpu:                    4
 memory:                30615216Ki
 pods:                    110
...

可以看到总共的和可分配的GPU数量都为1。

部署GPU应用

最后我们部署一个基于GPU的TensorFlow Jupyter应用来做一下简单的测试,以下为我们的Jupyter的部署配置文件jupyter.yml

---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: jupyter
spec:
  replicas: 1
  template:
    metadata:
      labels:
        k8s-app: jupyter
    spec:
      containers:
      - name: jupyter
        image: registry-vpc.cn-beijing.aliyuncs.com/tensorflow-samples/jupyter:1.1.0-devel-gpu
        imagePullPolicy: IfNotPresent
        env:
          - name: PASSWORD
            value: mypassw0rd
        resources:
          limits:
            alpha.kubernetes.io/nvidia-gpu: 1
        volumeMounts:
        - mountPath: /usr/local/nvidia
          name: nvidia
      volumes:
        - hostPath:
            path: /var/lib/nvidia-docker/volumes/nvidia_driver/375.39
          name: nvidia

---
apiVersion: v1
kind: Service
metadata:
  name: jupyter-svc
spec:
  ports:
  - port: 80
    targetPort: 8888
    name: jupyter
  selector:
    k8s-app: jupyter
  type: LoadBalancer

Deployment配置:

  • alpha.kubernetes.io/nvidia-gpu 指定调用nvidia gpu的数量
  • type=LoadBalancer 指定使用阿里云的负载均衡访问内部服务和负载均衡
  • 为了能让GPU容器运行起来,需要将Nvidia驱动和CUDA库文件指定到容器中。这里需要使用hostPath,在阿里云上您只需要将hostPath指定到/var/lib/nvidia-docker/volumes/nvidia_driver/375.39即可,并不需要指定多个bin和lib目录。
  • 环境变量 PASSWORD 指定了访问Jupyter服务的密码,您可以按照您的需要修改

1. 按照文档介绍的方式连接Kubernetes Web UI, 点击 CREATE 创建应用

2. 单击 Upload a YAML or JSON file。选择刚才创建的 jupyter.yml 文件

3. 待部署成功后, 在 Kubernetes Web UI 上定位到 default 命名空间,选择 Services。

可以看到刚刚创建的 jupyter-svc 的 jupyter 服务的外部负载均衡地址(External endpoints)

4. 点击外部负载均衡的地址,您就可以直接访问到Jupyter服务, 通过web Terminal内执行nvidia-smi命令查看容器内GPU设备状况。我们可以看到当前的容器里已经分配了一块Tesla P100 的GPU卡。

这样,您就可以正式开始自己的深度学习之旅

总结

利用阿里云容器服务的Kubernetes+GPU部署方案,您无需操心复杂Nvidia驱动和Kubernetes集群配置,一键部署,不出十分钟就可以轻松获得阿里云强大的异构计算能力和Kubernetes的GPU应用部署调度能力。这样您就可以专心的构建和运行自己的深度学习应用了。欢迎您尝试和体验。

后续我们会提供通过阿里云容器服务直接和部署Kubernetes+GPU的能力,敬请期待哦!

了解更多阿里云容器服务内容, 请访问https://www.aliyun.com/product/containerservice

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
阿里云容器服务 ACK
使用钉钉扫一扫加入圈子
+ 订阅

云端最佳容器应用运行环境,安全、稳定、极致弹性

官方博客
官网链接