决策智能

首页 标签 决策智能
# 决策智能 #
关注
2173内容
|
11小时前
| |
AutoAgents:比LangChain更激进的AI开发神器!自然语言生成AI智能体军团,1句话搞定复杂任务
AutoAgents 是基于大型语言模型的自动智能体生成框架,能够根据用户设定的目标自动生成多个专家角色的智能体,通过协作完成复杂任务。支持动态生成智能体、任务规划与执行、多智能体协作等功能。
|
1天前
|
《DeepSeek:工业互联网与人工智能融合的“催化剂”》
在工业4.0和智能制造的浪潮下,DeepSeek技术作为工业互联网与人工智能融合的“催化剂”,通过智能数据处理、精准建模预测、智能决策支持及智能交互,全面优化生产流程,提升企业竞争力。它能高效处理多源异构数据,挖掘关键信息,预测设备故障,提供科学决策建议,并简化操作流程,推动制造业向智能化、高效化、绿色化方向迈进,引领工业互联网新时代的发展潮流。
|
2天前
|
《揭开DeepSeek神秘面纱:复杂逻辑推理背后的技术机制》
DeepSeek是一款基于Transformer架构的大语言模型,以其在复杂逻辑推理任务上的卓越表现成为行业焦点。它通过自注意力机制高效捕捉长距离依赖关系,结合强化学习优化推理策略,利用思维链技术拆解复杂问题,并经过多阶段训练与精调提升推理能力。此外,DeepSeek融合知识图谱和外部知识,拓宽推理边界,使其在处理专业领域问题时更加准确和全面。这些先进技术使DeepSeek能够像人类一样思考和推理,为解决复杂问题提供强大支持。
|
2天前
|
机器学习:强化学习中的探索策略全解析
在机器学习的广阔领域中,强化学习(Reinforcement Learning, RL)无疑是一个充满魅力的子领域。它通过智能体与环境的交互,学习如何在特定的任务中做出最优决策。然而,在这个过程中,探索(exploration)和利用(exploitation)的平衡成为了智能体成功的关键。本文将深入探讨强化学习中的探索策略,包括其重要性、常用方法以及代码示例来论证这些策略的效果。
C-3PO:多智能体强化学习赋能检索增强生成
检索增强生成(Retrieval-augmented generation,RAG)作为一种关键范式,它通过融入外部知识来提升大型语言模型(LLMs)的能力。RAG的有效性很大程度上取决于检索器和大语言模型之间的对齐程度以及各组件间的紧密交互和协作。
|
4天前
|
《解锁深度Q网络新姿势:非马尔可夫环境难题》
深度Q网络(DQN)结合深度学习与Q学习,在Atari游戏等领域取得显著成绩,但在非马尔可夫环境中面临挑战。传统DQN基于马尔可夫决策过程(MDP),假设未来状态仅依赖当前状态和动作,忽视历史信息,导致在复杂环境中表现不佳。为此,研究人员提出了三种改进策略:1) 记忆增强型DQN,引入LSTM等记忆模块;2) 基于模型的强化学习结合,通过预测环境动态提升决策准确性;3) 多智能体协作与信息共享,利用多个智能体共同感知和决策。实验表明,这些改进有效提升了DQN在非马尔可夫环境中的性能,但计算复杂度和模型可解释性仍是未来研究的重点。
数据爬取对电商运营有何帮助?
数据爬取在电商运营中至关重要,助力商家了解市场动态、优化策略、提升用户体验。具体表现为:市场分析与竞争情报,如商品信息、促销活动、用户评价等;用户行为分析,构建用户画像,分析留存与流失;商品管理与优化,如定价策略、个性化推荐、库存管理;营销与推广,精准营销、社交媒体分析、广告优化;用户体验优化,如网站性能、客户服务;供应链管理,供应商评估、物流优化。通过数据爬取,商家能提高竞争力和盈利能力,实现商业目标。
Praison AI:LangChain危险了!这个低代码框架让AI智能体「自主协作」,1行代码搞定任务编排
Praison AI 是一个开源的多智能体框架,支持低代码创建和管理AI代理,提供多种流程类型和集成选项,适用于企业流程自动化、智能客服等场景。
Satori:快速体验MIT与哈佛推出7B参数的推理专家模型,具备自回归搜索和自我纠错能力
Satori 是由 MIT 和哈佛大学等机构联合推出的 7B 参数大型语言模型,专注于提升推理能力,具备强大的自回归搜索和自我纠错功能。
免费试用
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等