决策智能

首页 标签 决策智能
# 决策智能 #
关注
2524内容
AI智能体的开发流程
AI智能体开发区别于传统AI,具备自主规划、工具调用与自我反思能力。涵盖目标设定、任务拆解、工具集成、记忆构建、框架选型、评测对齐及部署运营七大环节,实现从“被动响应”到“主动执行”的跃迁,推动AI应用迈向自动化与智能化。#AI智能体 #AI应用 #软件外包公司
|
9小时前
|
微调技术
微调是将预训练模型适配特定任务的关键技术,主要包括指令微调、对齐微调和高效参数微调。LoRA通过低秩矩阵分解显著减少参数量与计算成本,Prefix/Prompt Tuning则通过可训练前缀或提示词实现高效微调,各类方法在参数量、速度与效果上各有权衡。
|
12小时前
|
AI工程vs传统工程 —「道法术」中的变与不变
本文从“道、法、术”三个层面对比AI工程与传统软件工程的异同,指出AI工程并非推倒重来,而是在传统工程坚实基础上,为应对大模型带来的不确定性(如概率性输出、幻觉、高延迟等)所进行的架构升级:在“道”上,从追求绝对正确转向管理概率预期;在“法”上,延续分层解耦、高可用等原则,但建模重心转向上下文工程与不确定性边界控制;在“术”上,融合传统工程基本功与AI新工具(如Context Engineering、轨迹可视化、多维评估体系),最终以确定性架构驾驭不确定性智能,实现可靠价值交付。
|
3天前
|
科技云报到:RPA+Agent,为什么可以1+1>2?
科技云报道原创。RPA与Agent深度融合,推动企业自动化从“流程执行”迈向“智能决策”。Agent负责认知与规划,RPA专注精准操作,二者协同实现业务场景的灵活应变与高效交付,助力企业降本增效、构建数字竞争力。
|
3天前
|
深度|AI浪潮已至:在2026年,我们真正需要掌握什么?
2026年,AI同事能力每7个月翻倍,职场迎来重塑。成功关键不再是知识量,而是与AI共舞的能力。从医疗到科研,AI成为无处不在的协作伙伴,但“工作废料”、信息泛滥与能源悖论也带来挑战。未来属于掌握人机协作的人:兼具批判思维、人性化技能与持续进化力。人类价值,在于让技术闪耀人性光芒。
|
5天前
|
别再往一个智能体里塞功能了:6种多智能体模式技术解析与选型指南
单智能体在功能增多时易陷入“指令迷雾”与“工具过载”,导致失效。本文提出6种多智能体架构模式:顺序流水线、并行扇出、层级监督、路由分发、反思迭代、共识投票,类比团队协作,通过分工提升系统稳定性与扩展性,解决复杂任务下的性能衰减问题。
数据合成篇|多轮ToolUse数据合成打造更可靠的AI导购助手
本文提出一种面向租赁导购场景的工具调用(Tool Use)训练数据合成方案,以支付宝芝麻租赁助理“小不懂”为例,通过“导演-演员”式多智能体框架生成拟真多轮对话。结合话题路径引导与动态角色交互,实现高质量、可扩展的合成数据生产,并构建“数据飞轮”推动模型持续优化。实验表明,该方法显著提升模型在复杂任务中的工具调用准确率与多轮理解能力。
【AI大模型面试宝典七】- 训练优化篇
【AI大模型面试宝典】聚焦微调核心技术:详解指令微调、RLHF对齐、LoRA高效参数调整原理与实现,涵盖矩阵低秩分解、初始化策略、变体优化及Prompt Tuning等方法对比,助你攻克大模型面试核心考点,精准提升offer竞争力!
AI 智能体开发的标准化流程
AI智能体开发已进入闭环治理新阶段,涵盖需求拆解、架构设计、工作流编排到多智能体协同。从角色定义到持续迭代,强调“小步快跑、低代码先行”,助力企业高效落地AI应用。#AI智能体 #AI应用 #软件外包公司
|
8天前
| |
构建AI智能体:八十六、大模型的指令微调与人类对齐:从知识渊博到善解人意
本文探讨了大模型从知识储备到实用助手的进化过程。首先分析了原始预训练模型存在的问题:擅长文本补全但缺乏指令理解能力,可能生成有害或无关内容。然后详细介绍了指令微调技术,通过高质量(指令-输出)数据集教会模型理解并执行翻译、总结、情感分析等任务。进一步阐述了人类对齐技术,包括基于人类反馈的强化学习(RLHF)的三个关键步骤,使模型输出不仅符合指令,更符合人类价值观。最后展示了Qwen模型微调实践,包括代码实现和效果对比。整个过程将AI从知识库转变为既强大又安全可靠的智能助手。
免费试用