Kafka 如何避免重复消费?
在Apache Kafka中,避免消息的重复消费是确保数据准确处理的关键。本文详细介绍了七种避免重复消费的方法:使用消费者组、幂等生产者、事务性生产者与消费者、手动提交偏移量、外部存储管理偏移量、去重逻辑及幂等消息处理逻辑。每种方法均有其优缺点,可根据实际需求选择合适方案。结合消费者组、手动提交偏移量和幂等处理逻辑通常是有效策略,而对于高一致性要求,则可考虑使用事务性消息。
开源埋点用户行为分析方案-ClickLog埋点(ClkLog)
ClkLog 是一款记录用户行为分析和画像的免费可商用开源软件,技术人员可快速搭建私有的应用系统。项目基于神策分析SDK,采用ClickHouse数据库对采集数据进行存储,采用前后端分离的方式来实现的访问统计和用户画像分析系统。在这里,你可以轻松看到用户访问网页、APP、小程序或业务系统的行为轨迹,同时也可以从时间、地域、渠道、用户访客类型等多维度了解用户的全方位信息,完美助力大数据用户画像、实时归因/离线归因分析、漏斗分析、大数据推荐场景。