微信基于 StarRocks 的实时因果推断实践
本文介绍了因果推断在业务中的应用,详细阐述了基于 StarRocks 构建因果推断分析工具的技术方案,通过高效算子的支持,大幅提升了计算效率。例如,t 检验在 6亿行数据上的执行时间仅需 1 秒。StarRocks 还实现了实时数据整合,支持多种数据源(如 Iceberg 和 Hive)的无缝访问,进一步增强了平台的灵活性与应用价值。
seatunnel配置mysql2hive
本文介绍了SeaTunnel的安装与使用教程,涵盖从安装、配置到数据同步的全过程。主要内容包括:
1. **SeaTunnel安装**:详细描述了下载、解压及配置连接器等步骤。
2. **模拟数据到Hive (fake2hive)**:通过编辑测试脚本,将模拟数据写入Hive表。
3. **MySQL到控制台 (mysql2console)**:创建配置文件并执行命令,将MySQL数据输出到控制台。
4. **MySQL到Hive (mysql2hive)**:创建Hive表,配置并启动同步任务,支持单表和多表同步。
vivo基于Paimon的湖仓一体落地实践
本文整理自vivo互联网大数据专家徐昱在Flink Forward Asia 2024的分享,基于实际案例探讨了构建现代化数据湖仓的关键决策和技术实践。内容涵盖组件选型、架构设计、离线加速、流批链路统一、消息组件替代、样本拼接、查询提速、元数据监控、数据迁移及未来展望等方面。通过这些探索,展示了如何优化性能、降低成本并提升数据处理效率,为相关领域提供了宝贵的经验和参考。
如何在IDE中通过Spark操作Hive
通过以上方法和代码示例,你可以在IDE中成功通过Spark操作Hive,实现大规模数据处理和分析。确保理解每一步的实现细节,应用到实际项目中时能有效地处理各种复杂的数据场景。