了解Hive 工作原理:Hive 是如何工作的?
Apache Hive 是一个建立在 Hadoop 之上的分布式数据仓库系统,提供类 SQL 查询语言 HiveQL,便于用户进行大规模数据分析。Hive Metastore(HMS)是其关键组件,用于存储表和分区的元数据。Hive 将 SQL 查询转换为 MapReduce 任务执行,适合处理 PB 级数据,但查询效率较低,不适合实时分析。优点包括易于使用、可扩展性强;缺点则在于表达能力有限和不支持实时查询。
【赵渝强老师】Hive的分区表
Hive的分区表与Oracle、MySQL类似,通过分区条件将数据分隔存储,提高查询效率。本文介绍了静态分区表和动态分区表的创建与使用方法,包括具体SQL语句和执行计划分析,附带视频讲解。静态分区表需显式指定分区条件,而动态分区表则根据插入数据自动创建分区。
【赵渝强老师】Hive的内部表与外部表
Hive是基于HDFS的数据仓库,支持SQL查询。其数据模型包括内部表、外部表、分区表、临时表和桶表。本文介绍了如何创建和使用内部表和外部表,提供了详细的步骤和示例代码,并附有视频讲解。
【赵渝强老师】Hive的体系架构
Hive是基于Hadoop的数据仓库平台,提供SQL-like的HQL语言进行数据分析,无需编写复杂的Java代码。Hive支持丰富的数据模型,可将SQL语句转换为MapReduce任务在Yarn上运行,底层依赖HDFS存储数据。Hive可通过CLI、JDBC和Web界面执行SQL查询。
【赵渝强老师】基于Flink的流批一体架构
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。
【赵渝强老师】Hadoop生态圈组件
本文介绍了Hadoop生态圈的主要组件及其关系,包括HDFS、HBase、MapReduce与Yarn、Hive与Pig、Sqoop与Flume、ZooKeeper和HUE。每个组件的功能和作用都进行了简要说明,帮助读者更好地理解Hadoop生态系统。文中还附有图表和视频讲解,以便更直观地展示这些组件的交互方式。
Apache Doris 2.1.7 版本正式发布
亲爱的社区小伙伴们,**Apache Doris 2.1.7 版本已于 2024 年 11 月 10 日正式发布。**2.1.7 版本持续升级改进,同时在湖仓一体、异步物化视图、半结构化数据管理、查询优化器、执行引擎、存储管理、以及权限管理等方面完成了若干修复。欢迎大家下载使用。