Kafka

首页 标签 Kafka
# Kafka #
关注
9983内容
Apache Kafka 3.0与KRaft模式的革新解读
在该架构中,Kafka集群依旧包含多个broker节点,但已不再依赖ZooKeeper集群。被选中的Kafka集群Controller将从KRaft Quorum中加载其状态,并在必要时通知其他Broker节点关于元数据的变更。这种设计支持更多分区与快速Controller切换,并有效避免了因数据不一致导致的问题。
绩效系统的技术重构:用工程思维解决公平性与效率难题
本文探讨如何通过技术重构绩效系统,解决评分公平性、数据孤岛与流程低效问题。从规则引擎、数据管道到自动化流程,提出工程化解决方案,并提供技术选型与实践建议,助力团队实现高效透明的绩效管理。
|
14天前
|
zk基础—5.Curator的使用与剖析
本文主要介绍了基于Curator进行基本的zk数据操作、基于Curator实现集群元数据管理、基于Curator实现HA主备自动切换、基于Curator实现Leader选举、基于Curator实现分布式Barrier、基于Curator实现分布式计数器、基于Curator实现zk的节点和子节点监听机制、基于Curator创建客户端实例的源码分析、Curator在启动时是如何跟zk建立连接的、基于Curator进行增删改查节点的源码分析、基于Curator的节点监听回调机制的实现源码、基于Curator的Leader选举机制的实现源码。
|
18天前
|
zk基础—2.架构原理和使用场景
ZooKeeper(ZK)是一个分布式协调服务,广泛应用于分布式系统中。它提供了分布式锁、元数据管理、Master选举及分布式协调等功能,适用于如Kafka、HDFS、Canal等开源分布式系统。ZK集群采用主从架构,具有顺序一致性、高性能、高可用和高并发等特点。其核心机制包括ZAB协议(保证数据一致性)、Watcher监听回调机制(实现通知功能)、以及基于临时顺序节点的分布式锁实现。ZK适合小规模集群部署,主要用于读多写少的场景。
|
21天前
|
java 最新技术驱动的智能教育在线实验室设备管理与实验资源优化实操指南
这是一份基于最新技术的智能教育在线实验室设备管理与实验资源优化的实操指南,涵盖系统搭建、核心功能实现及优化策略。采用Flink实时处理、Kafka消息队列、Elasticsearch搜索分析和Redis缓存等技术栈,结合强化学习动态优化资源调度。指南详细描述了开发环境准备、基础组件部署、数据采集与处理、模型训练、API服务集成及性能调优步骤,支持高并发设备接入与低延迟处理,满足教育机构数字化转型需求。代码已提供下载链接,助力快速构建智能化实验室管理系统。
Go语言并发模型与模式:Worker Pool 模式
Worker Pool(工作池)模式是Go语言中管理高并发任务的有效方法。通过限制 Goroutine 数量,避免资源耗尽或系统崩溃。其核心包括任务通道、工作者 Goroutine、结果通道(可选)及同步机制。示例代码展示了如何分配与处理任务,同时支持带返回值的实现。该模式适用于网络服务、批量任务处理、消息消费等场景,具有限制并发、提高稳定性和结构清晰的优点。但需注意通道关闭时机、任务取消机制及错误处理等问题。Worker Pool 是构建高效任务处理系统的强大工具。
|
1月前
|
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
阿里云消息队列 Kafka 架构及典型应用场景
阿里云消息队列 Kafka 是一款基于 Apache Kafka 的分布式消息中间件,支持消息发布与订阅模型,满足微服务解耦、大数据处理及实时流数据分析需求。其通过存算分离架构优化成本与性能,提供基础版、标准版和专业版三种 Serverless 版本,分别适用于不同业务场景,最高 SLA 达 99.99%。阿里云 Kafka 还具备弹性扩容、多可用区部署、冷热数据缓存隔离等特性,并支持与 Flink、MaxCompute 等生态工具无缝集成,广泛应用于用户行为分析、数据入库等场景,显著提升数据处理效率与实时性。
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
免费试用