AI伦理:探索智能时代的道德边界
【9月更文挑战第10天】随着AI技术的发展,我们步入了智能时代,AI的应用为社会带来便利的同时,也引发了伦理道德的讨论。本文探讨了数据隐私、算法偏见及系统透明度等伦理问题,并提出制定法规、行业自律、伦理审查及跨学科合作等策略,旨在确保AI技术的健康发展,构建智能、公平、安全的未来。通过共同努力,我们能在技术进步与道德边界间找到平衡点,推动社会持续进步。
自动驾驶技术架构和简述
首先自动驾驶技术从业务流程上分为3个核心的流程,分别是环境感知定位、决策规划、执行控制。
基于ModelScope,视觉AI启动模型开放之路
计算机视觉是人工智能的基石之一,也是应用最广泛的AI技术,从日常手机解锁使用的人脸识别,再到火热的产业前沿自动驾驶,视觉AI都大显身手。作为一名视觉AI从业者,我认为视觉AI的潜能远未得到充分发挥,穷尽我们这些研究者的力量,也只能覆盖少数行业和场景,远未能满足全社会的需求。因此,在AI模型社区魔搭ModelScope上,我们决定全面开源达摩院研发的视觉AI模型,首批达101个,其中多数为SOTA或
激光雷达与视觉联合标定综述!(系统介绍/标定板选择/在线离线标定等)
由于2D识别的成功,论文引入了一个大型基准,称为OMNI3D,重新审视了3D目标检测的任务。OMNI3D对现有数据集进行了重新利用和组合,生成了234k张图像,标注了300多万个实例和97个类别。由于相机内参的变化以及场景和目标类型的丰富多样性,这种规模的3D检测具有挑战性。论文提出了一个名为Cube R-CNN的模型,旨在通过统一的方法在摄像机和场景类型之间进行泛化。结果表明,在更大的OMNI3D和现有基准上,Cube R-CNN优于先前的工作。最后,论文证明了OMNI3D是一个强大的3D目标识别数据集,表明它提高了单个数据集的性能,并可以通过预训练加速对新的较小数据集的学习。
目标跟踪 | 3D目标跟踪高级入门!
在本文中,我将探讨3D跟踪领域,并向您展示如何设计一个3D目标跟踪系统。我们将从平面的2D 开始,然后转移到3D,将看到2D 和3D 跟踪之间的区别。