高算力服务器的应用场景
【10月更文挑战第18天】高算力服务器作为现代信息社会不可或缺的计算资源,正广泛应用于各行各业。从人工智能到科学研究,从智能交通到数字孪生,它为复杂的计算任务提供了不可替代的支持。
重磅发布!飞天智算平台+全球最大智算中心
阿里云宣布正式推出全栈智能计算解决方案“飞天智算平台”,并启动两座超大规模智算中心,为科研、公共服务和企业机构,提供强大的智能计算服务,可将计算资源利用率提高3倍以上,AI训练效率提升11倍,推理效率提升6倍。
90+目标跟踪算法&九大benchmark!基于判别滤波器和孪生网络的视觉目标跟踪:综述与展望(上)
视觉目标跟踪(VOT)是计算机视觉中的一个基本开放问题,任务是估计图像序列中目标的轨迹和状态。VOT具有广泛的应用,包括自动驾驶、机器人、智能视频监控、运动分析和医学成像。给定任意目标对象的初始状态,VOT中的主要挑战是学习在后续帧中搜索目标对象时使用的外观模型。近年来,由于引入了多种跟踪基准,如TrackingNet、VOT2018和GOT-10K,VOT受到了极大的关注。尽管最近取得了进展,VOT仍然是一个开放的研究问题,可能比以往任何时候都更加活跃。
【强化学习】常用算法之一 “SAC”
强化学习(Reinforcement Learning,RL)是一种机器学习的分支,其目标是让智能体(agent)通过与环境的交互学习到最优的行为策略。SAC(Soft Actor-Critic)算法是近年来在强化学习领域取得重要突破的算法之一,它是一种基于策略优化和价值函数学习的算法。相对于传统的强化学习算法,SAC算法在优化过程中引入了熵正则化和软化策略更新的概念,使得智能体能够更好地探索未知的状态,提高学习效率。