分布式计算

首页 标签 分布式计算
# 分布式计算 #
关注
37750内容
Spark中的资源调度
本文对Spark的资源调度的进行了介绍,涉及到4个维度的调度,包括SparkApplication/pool/TaskSetManager/Task。
阿里云大学精品课程:深入理解阿里云数加大数据开发套件Data IDE-基本知识
基于阿里云数加·MaxCompute构建大数据仓库的开发工具利器Data IDE《MaxCompute(原ODPS)开发入门指南——数据开发工具篇》,那么基于Data IDE进行数据开发想必也遇到一些不少的困惑,就自己在培训过程中的一些经验或者说阿里集团内的踩坑之路与大家在此分享,也欢迎拍砖。
| |
来自: 数据库
最佳实践 | RDS & POLARDB归档到X-Pack Spark计算
部分RDS和POLARDB For MySQL的用户曾遇到如下场景:当一张表的数据达到几千万时,你查询一次所花的时间会变多。 这时候采取水平分表的策略,水平拆分是将同一个表的数据进行分块保存到不同的数据库中,这些数据库中的表结构完全相同。 本文将介绍如何把这些水平分表的表归档到X-Pack Spark数仓,做统一的大数据计算。
Spark基本的RDD算子之groupBy,groupByKey,mapValues
1. groupby def groupBy[K: ClassTag](f: T => K): RDD[(K, Iterable[T])] def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Iterable[T])] def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Iterable[T])] groupBy算子接收一个函数,这个函数返回的值作为key,然后通过这个key来对里面的元素进行分组。
Hadoop新手篇:hadoop入门基础教程
关于hadoop的分享此前一直都是零零散散的想到什么就写什么,整体写的比较乱吧。最近可能还算好的吧,毕竟花了两周的时间详细的写完的了hadoop从规划到环境安装配置等全部内容。写过程不是很难,最烦的可能还是要给每一步配图,工程量确实比较大。
免费试用