揭秘可视化图探索工具 NebulaGraph Explore 是如何实现图计算的
在可视化图探索工具 NebulaGraph Explorer 3.1.0 版本中加入了图计算工作流功能,针对 NebulaGraph 提供了图计算的能力,同时可以利用工作流的 nGQL 运行能力支持简单的数据读取,过滤及写入等数据处理功能。
本文将简单分享下 NebulaGraph Explorer 中集成图计算的基本实现原理。
Grad-CAM的详细介绍和Pytorch代码实现
Grad-CAM (Gradient-weighted Class Activation Mapping) 是一种可视化深度神经网络中哪些部分对于预测结果贡献最大的技术。它能够定位到特定的图像区域,从而使得神经网络的决策过程更加可解释和可视化。