GPU云服务器

首页 标签 GPU云服务器
# GPU云服务器 #
关注
7804内容
Apache Spark 3.0 将内置支持 GPU 调度
如今大数据和机器学习已经有了很大的结合,在机器学习里面,因为计算迭代的时间可能会很长,开发人员一般会选择使用 GPU、FPGA 或 TPU 来加速计算。在 Apache Hadoop 3.1 版本里面已经开始内置原生支持 GPU 和 FPGA 了。
【合集】规模化落地云原生,阿里云亮相 KubeCon China(内含 KubeCon PPT )
相关文章一览 沉淀九年,一文看清阿里云原生大事件什么是 KubeCon? CNCF(Cloud Native Computing Foundation),即云原生计算基金会。CNCF 于 2015 年 7 月成立,隶属于Linux 基金会,旨在联合合作伙伴和开源社区推动云原生技术发展,如 Kubernetes、容器及微服务等。
语音识别真的比肩人类了?听听阿里iDST初敏怎么说
语音识别真的比肩人类了吗?各种算法之间该如何选择?如何提升语音交互的用户体验?带着这些问题,云栖社区采访了阿里云iDST智能交互总监初敏,听听她是怎么说的。
Mars——基于张量的统一分布式计算框架
很高兴在这里宣布我们的新项目:Mars,一个基于张量的统一分布式计算框架。我们已经在 Github 开源:https://github.com/mars-project/mars 。 背景 Python Python 是一门相当古老的语言了,如今,在数据科学计算、机器学习、以及深度学习领域,Python 越来越受欢迎。
浅析GPU通信技术(中)-NVLink
1.  背景 上一篇文章《浅析GPU通信技术(上)-GPUDirect P2P》中我们提到通过GPUDirect P2P技术可以大大提升GPU服务器单机的GPU通信性能,但是受限于PCI Expresss总线协议以及拓扑结构的一些限制,无法做到更高的带宽,为了解决这个问题,NVIDIA提出了NVLink总线协议。
| |
来自: 云原生
Kubeflow实战系列:阿里云上小试TFJob
`tf-operator`是Kubeflow的第一个CRD实现,解决的是TensorFlow模型训练的问题,它提供了广泛的灵活性和可配置,可以与阿里云上的NAS,OSS无缝集成,并且提供了简单的UI查看训练的历史记录。
Keras多GPU训练指南
随着Keras(v2.0.8)最新版本的发布,使用多GPU 训练深度神经网络将变得非常容易,就跟调用函数一样简单!利用多GPU,能够获得准线性的提速。
流行AI框架和库的优缺点比较
不知道自己应该选用那个AI框架和库?看看本文就行了,本文为AI开发的工程师们梳理了现在最流行的框架,并简单的分析了它们的优缺点。
| |
来自: 云原生
开源工具GPU Sharing:支持Kubernetes集群细粒度
问题背景 全球主要的容器集群服务厂商的Kubernetes服务都提供了Nvidia GPU容器调度能力,但是通常都是将一个GPU卡分配给一个容器。这可以实现比较好的隔离性,确保使用GPU的应用不会被其他应用影响;对于深度学习模型训练的场景非常适合,但是如果对于模型开发和模型预测的场景就会比较浪费。
免费试用