阿里云弹性AI服务 -- 基于Docker和EGS一键创建高性能Tensorflow分布式训练

简介: Tensorflow是目前使用最为广泛的深度学习框架之一,但是目前搭建分布式多机多卡训练比较困难,而且Tensorflow原生的分布式的性能很差。为了解决这个问题,我们创建了一个容器镜像:registry.

一. 概述

Tensorflow是目前使用最为广泛的深度学习框架之一,但是目前搭建分布式多机多卡训练比较困难,而且Tensorflow原生的分布式的性能很差,特别在云计算虚拟化环境下并行的挑战更大。

为了解决这个问题,我们创建了一个容器镜像:registry.cn-beijing.aliyuncs.com/ai_beijing/deep_learning:vx.x.x,目前包含了Tensorflow很新版本v1.6.0-rc0以及NVidia工具系列很新的版本:CUDA v9.0, cuDNN v7.0.5, NCCL v2.1;分布式训练上引入了horovod v0.11.2 + NCCL v2.1作为高性能Tensorflow分布式运行的框架,Horovod是基于MPI的Tensorflow分布式框架,因此也加入了Tensorflow对OpenMPI v3.0.0的支持,Horovod通过调用NCCL做了多机多卡的环形All-Reduce性能优化,分布式训练性能比原生的Tensorflow提高很多;另外通过Docker容器的host网络、不同的ssh登陆端口和免密登陆,为MPI和NCCL提供了高性能的通信通道;该镜像还打入了支持Horovod的性能优化的ResNet-50分布式训练的Demo程序。

本文通过容器服务一键创建EGS训练集群,并通过容器服务的资源编排一键搭建分布式训练环境,并运行性能优化的ResNet-50分布式训练程序获得基于EGS的高性能分布式训练性能。

二. 创建步骤

2.1. 创建集群

进入阿里云首页:https://www.aliyun.com/
在“弹性计算”里打开“容器服务”,点击“管理控制台”,点击侧边栏的"集群"->"创建Swarm集群":
1.png
2.png

“集群名称”填写:tensorflow-cluster,“地域”选择“华北5”(华北5的EGS特惠),网络类型选择“专有网络”,其他的默认:
3.png

2.2. 创建节点

点击“创建节点”,“操作系统”选择“Ubuntu 16.04 64位”,“实例系列”选择“系列III”,“实例类型”选择“GPU计算型gn5”,“实例规格”选择“ecs.gn5-c8g1.4xlarge”(这是双卡实例:2xP100 GPU、vCPU 16核心、Memory 120GB、网络带宽为Ethernet 8Gbps以太网,也可以选择别的实例),“实例数量”自选,至少需要2台,当前创建了4台:
4.png

点击“创建集群”,等待集群创建成功:
5.png
6.png

2.3. 创建应用

点击侧边栏的“应用”,选择刚才创建的集群,点击“创建应用”:
7.png

“应用名称”填“horovod-test”,“部署集群”选刚才创建的集群,点“使用编排模板创建”:
8.png

要创建的支持MPI的Service有2种类型,一种是mpihead作为MPI的头节点,设置网络类型为host:network_mode: host,设置ssh通信端口SSH_PORT为33端口(因为使用host网络,需要不同于默认的22端口),image镜像名填:registry.cn-beijing.aliyuncs.com/ai_beijing/deep_learning:vx.x.x,每个容器使用2块GPU:aliyun.gpu=2,mpihead容器数量为1个:aliyun.scale=1;
另一种是mpinode作为MPI的计算节点,设置网络类型为host:network_mode: host,设置ssh通信端口SSH_PORT为33端口,image镜像名填:registry.cn-beijing.aliyuncs.com/ai_beijing/deep_learning:vx.x.x,每个容器使用2块GPU:aliyun.gpu=2,mpinode容器数量为3个:aliyun.scale=3(根据创建的节点数:1个mpihead+3个mpinode=当前创建的4个EGS节点),点击右下角“创建并部署”:
9.png

点击“查看应用列表”:
10.png
11.png

点击刚创建的应用“horovod-test”进去可以看到“服务列表”里的2个服务mpihead, mpinode都运行正常:
12.png

2.4. 执行单机多卡训练

点击“mpihead”,再点击“远程终端”,进入mpihead容器的控制台,执行ls,在当前目录下,benchmark里有ResNet-50的Horovod分布式代码;start.sh是每次容器拉起来都会执行的脚本,会修改ssh的端口号和启动sshd;hvd-local.sh会执行单机多卡的训练程序;hvd-distribute.sh会执行多机多卡训练程序。先执行./hvd-local.sh 1/2,会执行单机1卡和2卡的训练程序:
14.png

经过100步的训练,双卡训练性能为442.37 images/second:
15.png

2.5. 执行多机多卡训练

点击左侧栏的“节点”,获取当前集群tensorflow-cluster的所有节点的IP地址,填入到hosts文件中:
16.0.png
16.png

编辑当前“远程终端”下的hvd-distribute.sh文件,-np后面填所有的GPU卡数(这里填4台*2卡=8),-npernode后面填每台节点的GPU卡数(这里每台是2卡),执行./hvd-distribute.sh就会运行4机一共8卡的分布式训练:
17.0.png
17.png

经过100步的训练,4机一共8卡训练性能为1701.23 images/second:
18.png

三. 本文Tensorflow多机多卡性能加速比

我们把相关的性能优化都打到docker容器镜像里了,用户可以基于Docker和EGS一键创建高性能Tensorflow分布式训练。本文跑的ResNet-50分布训练,4机一共8块P100比单卡的加速比可以达到7.3倍,多机多卡的并行效率可以达到91.2%。
19.2.png

四. 性能优化的ImageNet真实数据Tensorflow的加速比

上面是基于拟合数据的性能,我们在持续优化基于EGS的Tensorflow分布式训练性能,目前ImageNet真实数据的性能加速比如下,4机一共32块P100 GPU比单卡的加速比可以达到28.9倍,多机多卡的并行效率可以达到90.3%。
20.png

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
1月前
|
存储 监控 算法
117_LLM训练的高效分布式策略:从数据并行到ZeRO优化
在2025年,大型语言模型(LLM)的规模已经达到了数千亿甚至数万亿参数,训练这样的庞然大物需要先进的分布式训练技术支持。本文将深入探讨LLM训练中的高效分布式策略,从基础的数据并行到最先进的ZeRO优化技术,为读者提供全面且实用的技术指南。
|
2月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
1月前
|
机器学习/深度学习 监控 PyTorch
68_分布式训练技术:DDP与Horovod
随着大型语言模型(LLM)规模的不断扩大,从早期的BERT(数亿参数)到如今的GPT-4(万亿级参数),单卡训练已经成为不可能完成的任务。分布式训练技术应运而生,成为大模型开发的核心基础设施。2025年,分布式训练技术已经发展到相当成熟的阶段,各种优化策略和框架不断涌现,为大模型训练提供了强大的支持。
|
4月前
|
机器学习/深度学习 人工智能 API
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
|
5月前
|
存储 机器学习/深度学习 自然语言处理
避坑指南:PAI-DLC分布式训练BERT模型的3大性能优化策略
本文基于电商搜索场景下的BERT-Large模型训练优化实践,针对数据供给、通信效率与计算资源利用率三大瓶颈,提出异步IO流水线、梯度压缩+拓扑感知、算子融合+混合精度等策略。实测在128卡V100集群上训练速度提升3.2倍,GPU利用率提升至89.3%,训练成本降低70%。适用于大规模分布式深度学习任务的性能调优。
281 3
|
2月前
|
缓存 前端开发 Docker
Docker Layer Caching:加速你的容器构建
Docker Layer Caching:加速你的容器构建