图计算

首页 标签 图计算
# 图计算 #
关注
632内容
【论文解读】MV3D-Net 用于自动驾驶的多视图3D目标检测网络
​MV3D-Net融合了视觉图像和激光雷达点云信息;它只用了点云的俯视图和前视图,这样既能减少计算量,又保留了主要的特征信息。随后生成3D候选区域,把特征和候选区域融合后输出最终的目标检测框。 论文地址:Multi-View 3D Object Detection Network for Autonomous Driving 开源代码:GitHub - bostondiditeam/MV3D: Multi-View 3D Object Detection Network for Autonomous Driving
用AI精准定位问题代码,调试时间直接砍半!LocAgent:斯坦福开源代码调试神器,多跳推理锁定问题代码
LocAgent是由斯坦福大学、耶鲁大学等顶尖机构联合开发的代码定位框架,通过将代码库转化为图结构并利用大语言模型的多跳推理能力,实现精准的问题代码定位。
开源!一文了解阿里一站式图计算平台GraphScope
随着大数据的爆发,图数据的应用规模不断增长,现有的图计算系统仍然存在一定的局限。阿里巴巴拥有全球最大的商品知识图谱,在丰富的图场景和真实应用的驱动下,阿里巴巴达摩院智能计算实验室研发并开源了全球首个一站式超大规模分布式图计算平台GraphScope,并入选中国科学技术协会“科创中国”平台。本文详解图计算的原理和应用及GraphScope的架构设计。
数仓建模—OneID
这个和上面的更新问题有点像,上面更新问题我们可以保证一个自然人的OneID不发生变化,但是选择问题会导致发生变化,但是这个问题是图计算中无法避免的,我们举个例子,假设我们有用户的两个ID(A_ID,C_ID),但是这两个ID 在当前是没有办法打通的,所以我们就会为这个两个ID 生成两个OneID,也就是(A_OneID,B_OneID),所以这个时候我们知道因为ID Mapping 不上,所以我们认为这两个ID 是两个人。
|
6月前
|
Python音频处理-频谱图实现
本教程介绍如何使用 PyTorch 提取音频特征,重点实现频谱图的生成。内容包括使用 torchaudio 进行频谱提取、频谱图维度解析、手动实现频谱计算步骤,并对两种方法的结果进行对比分析,展示其差异与实现细节。
揭秘工业级大规模GNN图采样
互联网下的图数据纷繁复杂且规模庞大,如何将GNN应用于如此复杂的数据上呢?答案是图采样。结合阿里巴巴开源的GNN框架Graph-Learn(https://github.com/alibaba/graph-learn),本文重点介绍GNN训练过程中的各种图采样和负采样技术。
从API到Agent:万字长文洞悉LangChain工程化设计
本文作者试着从工程角度去理解LangChain的设计和使用。大家可以将此文档作为LangChain的“10分钟快速上手”手册,希望帮助需要的同学实现AI工程的Bootstrap。
免费试用