25 个值得关注的检索增强生成 (RAG) 模型和框架
大型语言模型(LLM)如GPT-4在自然语言处理(NLP)领域展现了卓越能力,但也存在知识截止、静态知识库和内存限制等局限。检索增强生成(RAG)通过集成检索机制,允许LLM动态访问和整合外部数据源,提高了生成响应的准确性、相关性和时效性。本文深入探讨了25种先进的RAG变体,每种变体都旨在优化检索和生成过程的特定方面,涵盖成本限制、实时交互和多模态数据集成等问题,展示了RAG在提升NLP能力方面的多功能性和潜力。
通义千问赋能CACA指南:构建智慧肿瘤诊疗新生态
本文探讨了如何利用阿里云通义千问大模型,结合中国抗癌协会(CACA)编撰的《中国肿瘤整合诊治指南》,打造新一代智能化临床决策支持系统。该系统通过分层架构设计,实现智能问答、临床决策支持和患者管理等功能,显著提升了医生的工作效率和治疗方案的科学性。
阿里巴巴首次揭秘电商知识图谱AliCoCo!淘宝搜索原来这样玩!
电商技术进入认知智能时代,将给亿万用户带来更加智能的购物体验。经过两年的探索与实践,阿里巴巴的电商认知图谱 AliCoCo 已成体系规模,并在搜索推荐等电商核心业务场景上取得佳绩,关于 AliCoCo 的文章《AliCoCo: Alibaba E-commerce Cognitive Concept Net》也已被国际顶会 SIGMOD 接收,这是阿里巴巴首次正式揭秘领域知识图谱。
本文将通过介绍 AliCoCo 的背景、定义、底层设计、构建过程中的一些算法问题,以及在电商搜索和推荐上的广泛应用,分享 AliCoCo 从诞生到成为阿里巴巴核心电商引擎的基石这一路走来的思考。
[万字长文]知识图谱之本体结构与语义解耦——知识建模看它就够了!
过去两年多的时间,针对蚂蚁域内业务场景和知识体系多样、复杂,知识建模成本高导致图谱项目启动难的问题,我们提出了一种结构与语义解耦的知识建模及schema设计方法,并在商家图谱、事理图谱、保险图谱等多个项目中进行实践。相关简化schema设计及帮助对知识的属性语义化、标准化的能力已经集成到蜘蛛知识平台。本文总结了我们过去所工作,沉淀为体系化的方法论,并针对不同复杂程度的知识建模问题,进行实操指南。
一文读懂 Mysql MVCC
MVCC(Multi-Version Concurrency Control)是一种**多版本并发控制**技术,常用于数据库管理系统中,用于支持事务的并发执行。MVCC 技术可以在读取数据时不产生锁,同时保证数据的一致性。具体来说,MVCC 技术会在每个数据行上保存多个版本的数据,每个版本都有一个时间戳,当一个事务需要读取数据时,会根据该事务的时间戳选择合适的数据版本进行读取,从而避免了读取数据时的锁定操作。同时,MVCC 技术还可以通过回滚日志和垃圾回收机制来保证数据的一致性和完整性。MVCC 技术在 InnoDB 存储引擎中得到了广泛的应用,成为了 InnoDB 存储引擎的一个重要特性
智能语音助手的技术原理与实现
【7月更文挑战第31天】智能语音助手的技术原理与实现涉及语音识别、自然语言处理、知识图谱以及多模态交互等多个方面。随着人工智能技术的不断发展和创新,智能语音助手将更加智能化、高效化和普适化,为我们的生活带来更加便捷和丰富的体验。
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了一种结合知识图谱与大型语言模型(LLM)的GraphRAG系统,利用PolarDB、通义千问及LangChain实现。知识图谱通过结构化信息、语义理解和推理等功能,增强了信息检索与自然语言处理效果。PolarDB具备图引擎与向量检索能力,适配知识图谱存储与查询。通义千问处理自然语言,LangChain则整合模型与应用。实战步骤包括环境准备、数据库配置与数据导入,并通过实例展示了图谱与向量联合检索的优越性,提升了问答系统的准确性和实用性。