向量存储vs知识图谱:LLM记忆系统技术选型
本文探讨LLM长期记忆系统的构建难点与解决方案,对比向量检索与知识图谱架构优劣,分析Zep、Mem0、Letta等开源框架,并提供成本优化策略,助力开发者实现高效、可扩展的AI记忆系统。
Java与图神经网络:构建企业级知识图谱与智能推理系统
图神经网络(GNN)作为处理非欧几里得数据的前沿技术,正成为企业知识管理和智能推理的核心引擎。本文深入探讨如何在Java生态中构建基于GNN的知识图谱系统,涵盖从图数据建模、GNN模型集成、分布式图计算到实时推理的全流程。通过具体的代码实现和架构设计,展示如何将先进的图神经网络技术融入传统Java企业应用,为构建下一代智能决策系统提供完整解决方案。
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
102_灾难性遗忘:微调过程中的稳定性挑战
在大型语言模型(LLM)的微调过程中,我们常常面临一个关键挑战:当模型学习新领域或任务的知识时,它往往会忘记之前已经掌握的信息和能力。这种现象被称为"灾难性遗忘"(Catastrophic Forgetting),是神经网络学习中的经典问题,在LLM微调场景中尤为突出。
13_命名实体识别:精准提取文本中的关键信息
在当今信息爆炸的时代,人们每天需要处理海量文本数据。如何从这些非结构化文本中高效地提取关键信息,成为了自然语言处理(NLP)领域的核心挑战之一。命名实体识别(Named Entity Recognition,简称NER)技术正是解决这一问题的关键技术,它能够自动识别并分类文本中的人名、地名、组织机构名、时间、日期、金额等具有特定含义的实体。
52_领域模型:BioBERT与FinBERT
在大语言模型(LLM)快速发展的今天,通用模型如GPT-4、Claude 3和Gemini虽然在广泛任务上表现出色,但在专业领域如医疗、金融和法律等场景中,往往难以达到专业人员的期待精度。2025年的研究表明,领域特定的预训练模型在垂直领域任务中能够显著超越通用模型,为专业应用提供更可靠的支持。本文将深入剖析BioBERT、FinBERT等代表性领域模型的技术原理、训练方法、性能评估及实际应用案例,探讨垂直领域预训练的独特优势与未来发展趋势。
81_Few-Shot提示:少样本学习的技巧
在大型语言模型(LLM)时代,提示工程(Prompt Engineering)已成为释放模型潜力的关键技能。其中,Few-Shot Prompting作为一种强大的技术,通过提供少量高质量的示例,显著提升模型在复杂任务上的性能。2025年,随着模型规模和能力的持续增长,Few-Shot Prompting技术也在不断演进,从简单的示例提供发展到更加精细化的优化策略。