消息中间件

首页 标签 消息中间件
# 消息中间件 #
关注
27903内容
深入理解Flink Streaming SQL
序言        时效性提升数据的价值,所以Flink这样的流式(Streaming)计算系统应用得越来越广泛。        广大的普通用户决定一个产品的界面和接口。       ETL开发者需要简单而有效的开发工具,从而把更多时间花在理业务和对口径上。  &n
现代IM系统中的消息系统架构 - 实现篇
序 消息类场景是表格存储(Tablestore)主推的方向之一,因其数据存储结构在消息类数据存储上具有天然优势。为了方便用户基于Tablestore为消息类场景建模,Tablestore封装Timeline模型,旨在让用户更快捷的实现消息类场景需求。
| |
来自: 物联网
PostgreSQL "物联网"应用 - 1 实时流式数据处理案例(万亿每天)
物联网的特点是万物联网,会产生大量的数据。 例如 : 一盒药,从生产,到运输,到药店,到售卖。每流经一个节点,都会记录它的信息。 又如 : 健康手环,儿童防丢手表,一些动物迁徙研究的传感器(如中华鲟),水纹监测,电网监测,煤气管道监测,气象监测等等这些信息。 股价的实时预测。 车流实时
抽奖活动的高可用、高并发优化
这几年工作中做过不少营销活动,这里以抽奖活动为例,讨论一下如何设计出一个高可用、高并发的营销系统。 高可用、高并发架构的核心是分流和限流。系统架构时,应根据每一种营销活动的场景与特性,制定不同的分流、限流方案。
Kafka vs RocketMQ ——消息及时性对比
引言 在前几期的消息中间件对比中,我们为Kafka和RocketMQ设定了几个性能场景(单机系统可靠性、多Topic对性能稳定性的影响以及Topic数量对单机性能的影响),这些场景大都是以服务端的吞吐能力为对比焦点。这一期,我们将从客户端的角度出发,为大家带来Kafka和RocketMQ消息及时性
| |
来自: 云存储
时间序列数据的存储和计算 - 开源时序数据库解析(二)
KairosDB   KairosDB最初是从OpenTSDB 1.x版本fork出来的一个分支,目的是在OpenTSDB的代码基础上进行二次开发来满足新的功能需求。其改造之一就是支持可插拔式的存储引擎,例如支持H2可以方便本地开发和测试,而不是像OpenTSDB一样与HBase强耦合。
| |
来自: 云存储
现代IM系统中的消息系统架构 - 架构篇
前言 IM全称是『Instant Messaging』,中文名是即时通讯。在这个高度信息化的移动互联网时代,生活中IM类产品已经成为必备品,比较有名的如钉钉、微信、QQ等以IM为核心功能的产品。当然目前微信已经成长为一个生态型产品,但其核心功能还是IM。
| |
来自: 云存储
亿级消息系统的核心存储:Tablestore发布Timeline 2.0模型
互联网快速发展的今天,社交类应用、消息类功能大行其道,占据了大量网络流量。大至钉钉、微信、微博、知乎,小至各类App的推送通知,消息类功能几乎成为所有应用的标配。根据场景特点,我们可以将消息类场景归纳成三大类:IM(钉钉、微信)、Feed流(微博、知乎)以及常规消息队列。
免费试用