阿里云PAI大模型RAG对话系统最佳实践
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
【HBase入门与实战】一文搞懂HBase!
该文档介绍了HBase,一种高吞吐量的NoSQL数据库,适合处理大规模数据。HBase具备快速读写、列式存储和天然支持集群部署的特点,常用于高并发场景。NoSQL与关系型数据库的主要区别在于数据模型、查询语言和可伸缩性。HBase的物理架构包括Client、Zookeeper、HMaster和RegionServer,其中RegionServer管理数据存储。HBase的读写流程利用MemStore和Bloom Filter提高效率。此外,文档还提到了HBase的应用,如时间序列数据、消息传递和内容服务。
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
基于阿里云PAI平台搭建知识库检索增强的大模型对话系统
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
如何创建2024云栖Openlake测试项目和配置环境
2024年云栖大会,MaxCompute 多项重磅产品新功能邀测发布,新特性包括 支持OpenLake的湖仓一体2.0、Object Table支持SQL或MaxFrame处理非结构化数据、Delta Table增量表格式、基于增量物化视图的增量计算、MCQA2.0 SQL引擎查询加速等。其相关特性将在中国区 公共云 北京、上海、杭州、深圳Region 上线开放试用。本文以最佳实践的方式,帮助您创建MaxCompute和周边产品 在Openlake解决方案demo中需要准备的实例、项目和开发环境,并完成配置。欢迎您玩转云栖邀测demo,体验新功能。