欢迎加入Spark中国社区
欢迎大家关注Spark中国社区!
社区成员会定期把Spark(全球)社区的最新发布、文档等翻译后放到社区,并经常组织社区成员线上、线下的直播分享、meetup以及有奖比赛等活动,非常欢迎大家加入社区,对于发帖、提问、答疑的同学,社区会给予特色的奖励
Spark社群钉钉群
Spark中的资源调度
本文对Spark的资源调度的进行了介绍,涉及到4个维度的调度,包括SparkApplication/pool/TaskSetManager/Task。
【译】Spark NLP使用入门
原文链接: [https://www.kdnuggets.com/2019/06/spark-nlp-getting-started-with-worlds-most-widely-used-nlp-library-enterprise.html)
译者:辰石,阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。
Apache iceberg:Netflix 数据仓库的基石
Apache Iceberg 是一种用于跟踪超大规模表的新格式,是专门为对象存储(如S3)而设计的。 本文将介绍为什么 Netflix 需要构建 Iceberg,Apache Iceberg 的高层次设计,并会介绍那些能够更好地解决查询性能问题的细节。
Spark-TFRecord: Spark将全面支持TFRecord
本文中,我们将介绍 Spark 的一个新的数据源,Spark-TFRecord。Spark-TFRecord 的目的是提供在Spark中对原生的 TensorFlow 格式进行完全支持。本项目的目的是将 TFRecord 作为Spark数据源社区中的第一等公民,类似于 Avro,JSON,Parquet等。Spark-TFRecord 不仅仅提供简单的功能支持,比如 Data Frame的读取、写入,还支持一些高阶功能,比如ParititonBy。使用 Spark-TFRecord 将会使数据处理流程与训练工程完美结合。
基于OSS的EB级数据湖
数据湖无缝对接多种计算分析平台,对Hadoop生态支持良好,存储在数据湖中的数据可以直接对其进行数据分析、处理、查询,通过对数据深入挖掘与分析,洞察数据中蕴含的价值。