什么是元数据?企业该如何进行元数据管理?
在数据驱动时代,元数据是描述数据的“数据”,涵盖业务、技术和管理信息。它能解决指标口径混乱、数据可信度低、变更影响难追溯等问题,是实现数据资产化、提升协作效率与合规水平的关键基础。
DAMA数据管理导论-数据管理的本质及价值
数据管理是将数据转化为战略资产的系统方法,强调主动治理而非被动存储。通过提升数据质量、强化元数据管理、推动跨部门协作,企业可实现从直觉决策到数据驱动的跃迁,释放数据在营销、产品、人力等场景的深层价值。
阿里云领跑中国向量数据管理公有云服务市场
IDC发布《2024中国向量数据管理公有云服务市场份额》按照索引条数统计,2024年中国向量数据管理公有云服务规模共计4.882万亿条,其中阿里云占比38%,大幅领跑中国市场。
元数据管理是什么?怎么管?
元数据管理是让数据成为真正资产的关键。它通过统一管理“关于数据的数据”,解决找数难、口径不一、追溯困难等问题,建立业务与技术间的共识,实现数据可发现、可理解、可信任,推动企业数据驱动落地。
从数据管理的角度,理解数据治理的内容
数据治理不仅是高层关注的顶层设计,更是解决数据混乱、质量低下等实际问题的系统性方法。其核心在于通过数据管理实现全生命周期管控,确保数据可信、可用、安全,从而提升决策质量、驱动业务创新。
116_大规模预训练数据管理与质量控制机制
在2025年的大语言模型(LLM)训练领域,数据管理和质量控制已成为决定模型性能上限的关键因素。随着模型规模的不断扩大(从早期的数十亿参数到如今的数千亿参数),对训练数据的数量、多样性和质量要求也呈指数级增长。一个高效的数据管理系统和严格的质量控制机制,不仅能够确保训练过程的稳定性,还能显著提升最终模型的性能和安全性。
Python字典:高效数据管理的瑞士军刀
Python字典基于哈希表实现,提供接近O(1)的高效查找,支持增删改查、遍历、合并等丰富操作,广泛应用于计数、缓存、配置管理及JSON处理。其灵活性与性能使其成为数据处理的核心工具。