数学
S. Gala, A note on div-curl lemma, Serdica Math. J., 33 (2007), 339--350. E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals.
设 $f\in C[0,+\infty)$, $a$ 为实数, 且存在有限极限 $$\bex \vlm{x}\sez{f(x)+a\int_0^x f(t)\rd t}. \eex$$ 证明; $f(+\infty)=0$.
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac{1}{b-a}\int_a^b f^p(t)\rd t.
计算以下渐近等式 $$\bex \int_0^1 \cfrac{x^{n-1}}{1+x}\rd x=\cfrac{a}{n}+\cfrac{b}{n^2}+o\sex{\cfrac{1}{n^2}}\quad(n\to\infty) \eex$$ 中的待定常数 $a,b$.
证明: 当 $\lm
证明: 当 $m0}\\ &=\lim_{x\to0^+}\cfrac{\sex{\xi_x\cos\cfrac{1}{\xi_x}}\cdot x}{x^m}\\ &=0. \eea \eeex$$
令 $\dps{B(m,n)=\sum_{k=0}^n C_n^k \cfrac{(-1)^k}{m+k+1}}$, $m,n\in\bbN^+$. (1) 证明 $B(m,n)=B(n,m)$; (2) 计算 $B(m,n)$.
设 $n\in\bbN^+$, 计算积分 $\dps{\int_0^{\pi/2} \cfrac{\sin nx}{\sin x}\rd x}.$ 解答: (1) 由 $$\beex \bea 2\sin x\cdot \cfrac{1}{2}&=\sin x,\\ 2\sin x\cd...
设 $f\in C(-\infty,+\infty)$, 定义 $\dps{F(x)=\int_a^b f(x+t)\cos t\rd t}$, $a\leq x\leq b$. (1) 证明: $F$ 在 $[a,b]$ 上可导; (2) 计算 $F'(x)$.
设 $f\in C^2[0,\pi]$, 且 $f(\pi)=2$, $\dps{\int_0^\pi [f(x)+f''(x)]\sin x\rd x=5}$. 求 $f(0)$. 解答: 由 $$\beex \bea 5&=\int_0^\pi [f(x)+f''(x)]\sin x...
设 $f$ 为 $[0,1]$ 上的连续非负函数, 找出满足条件 $$\bex \int_0^1 f(x)\rd x=1,\quad \int_0^1 xf(x)\rd x=a,\quad \int_0^1 x^2f(x)\rd x=a^2 \eex$$ 的所有 $f$, 其中 $a$ 为给定实数.
证明: $\dps{\int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd t}\rd x=0}$. 证明: $$\beex \bea \int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd ...
双杠摆腿 腹部绕杠 双杠仰卧起坐15个 悬垂慢翻上[腹部绕杠]16个 单杠挂臂后空翻54个貌似 头顶地落手倒立1分钟 2012_07_27的单杠挂臂后空翻40个 2012年10月28日单杠悬垂慢翻上[腹部绕杠]20个 2012年10月28日双杠倒立 ...
信息门户: http://my.gnnu.cn 研究生管理: http://192.168.26.227/pg/ 课表 2017-2018-2 周一 周二 周三 周四 周五 周六 周日 1-2节 ...
$$\bex \sen{f}_{L^q}\leq C\sen{f}_{L^2}^{\frac{3}{q}-\frac{1}{2}} \sen{\n f}_{L^2}^{\frac{3}{2}-\frac{3}{q}},\quad (2\leq q\leq 6). \eex$$
$$\bex \curl(f\bbu)=\n f\times\bbu+f\curl \bbu. \eex$$
For $2
设 $f$ 为 $[0,1]$ 上的连续正函数, 且 $\dps{f^2(t)\leq 1+2\int_0^t f(s)\rd s}$. 证明: $f(t)\leq 1+t$. 证明: 设 $\dps{F(t)=\int_0^t f(s)\rd s}$, 则 $F(0)=0$, 且 $...
设 $f$ 在 $[0,1]$ 上可微, 且满足条件 $\dps{f(1)=3\int_0^{1/3} e^{x-1}f(x)\rd x}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f(\xi)+f'(\xi)=0$.
学期初监考了“开学初补考”,14周-18周又有三场多监考,结果期末还有如下的,怎么安排的么。 序号 课程名称 班级名称 人数 考试教室 考试时间 监考1 监考2 72 大学英语Ⅱ 13地理A1班 62 1-308 2014年6月23日(09:0...
(from Longji Zhong) 设 $f$ 在 $(0,\infty)$ 上一致连续, 且对 $\forall\ h>0$, $\dps{\vlm{n}f(nh)}$ 存在. 试证: $\dps{\vlm{x}f(x)}$ 存在.
(from Yanfei Dai) 设 $M$ 为自然数集, 试给出 $M$ 的两个双射变换 $\sigma,\tau$ 使得 $\sigma \tau\neq \tau\sigma$. 解答: 取 $$\beex \bea \sigma(1)=2,&\quad\sigma(2)=1,\\ ...
设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1].
第294期_微分方程与数学物理问题习题集 摘要: 本文给出了作者于 2011 年 10 月 10 日至 2011 年 10 月 31 日 看 Nail H. Ibragimov 的 时留下的习题全部解答.
1 对 $k$ 阶连续可微函数 $f$, $g$, Leibniz 告诉我们 $$\bex D^k_x(fg)=\sum_{s=0}^k\frac{k!}{(k-s)!s!}D^{k-s}_x(f)\cdot D^s_x(g).
周二吃完中饭就回家了。今天才刚到。 爷爷仙逝 (见我的一些诗词),回家。到家了泪不出来,现在又有点感觉了。 只愿爸爸妈妈身安体健。
SCI: Science Citation Index EI: The Engineering Index ISTP: Index to Scientific & Technical Proceedings
1 (15') 设 $R(X,Y):\ \calX(M)\to \calX(M)$ 为曲率, 求证: (1)$R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2$, $\forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty ...
随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probability space satisfying the usual conditions.
文心孤竹发帖, 张祖锦整理如下 1 头号大疯子---Albert Einstein(爱因斯坦) 最近在构思写一写普林斯顿高等研究所的疯子们. 本来想先谈谈第一任院长, 可以没找到照片, 所以转而谈里面最大的疯子:爱因斯坦! 大家看看这表情 (下图)够不够头号大疯子的称号.
1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家、物理学家. 1736年1月25日生于意大利都灵, 1813年4月10日卒于巴黎.
第293期_偏微分方程基础教程 摘要: 本文给出了 L.C. Evans 的 前三章的学习笔记及习题全部解答. 下载提示: 点击链接后, 拉到最下端, 看见 ”正在获取下载地址“, 等待后点击”中国电信下载“即可.
在 [赵春来, 徐明曜, 《抽象代数I》, 习题 1.3, Page 46] 有华罗庚等式: $$\bex AB\neq 0,E\ra A-\sex{A^{-1}+\sex{B^{-1}-A}^{-1}}^{-1}=ABA.
伽罗瓦的遗书-论群、方程和阿贝尔积分 下载提示: 点击链接后, 拉到最下端, 看见 ”正在获取下载地址“, 等待后点击”中国电信下载“即可.
因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录
因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录
因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录
1 可测函数 1.1可测函数与简单函数的关系 $$\beex \bea f\mbox{ 非负可测}&\ra \exists\ 0\leq \phi_k\nearrow f,\\ f\mbox{ 有界可测}&\ra \exists\ \phi_k\rightrightarrows f,\\ f\mbox{ 一般可测}&\ra \exists\ \phi_k\to f.
设 $f$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内二阶可导, 且 $$\bex \lim_{x\to 0}\cfrac{f(x)}{x^2}\mbox{ 存在,}\quad \int_0^1 f(x)\rd x=f(1).
试计算 $\dps{\int_0^{\cfrac{\pi}{2}}\cfrac{x^2}{\sin^2x}\rd x}$. 解答: $$\beex \bea \int_0^{\cfrac{\pi}{2}}\cfrac{x^2}{\sin^2x}\rd x &=-\int_0^{\cfrac{...
4个0任意加符号得24, 办得到么? $$(0!+0!+0!+0!)!=24.$$
(from zhangwuji) $$\bex \sum\limits_{n=0}^{\infty}\dfrac{n^3+2n+1}{(n^4+n^2+1)n!},\quad \sum\limits_{n=0}^{\infty}\dfrac{1}{(n^4+n^2+1)n!}.
试说明能有无穷多个函数, 其中每个函数 $f$, 皆使得 $f\circ f$ 为 $\bbR$ 上的恒等函数.
是否存在这样的函数, 它在区间 $[0,1]$ 上每点取有限值, 在此区间的任何点的任意邻域内无界. (上海师范大学)
(对数不等式) $$\bex \cfrac{x}{1+x}\leq \ln(1+x)\leq x\quad(x>-1), \eex$$ 等号当且仅当 $x=0$ 时成立.
(平均值不等式) 任意 $n$ 个非负实数的几何平均值小于或等于它们的算术平均值, 即 $\forall\ a_i\geq 0\ (i=1,2,\cdots,n)$, 恒有 $$\bex \sqrt[n]{a_1a_2\cdots a_n}\leq \cfrac{a_1+a_2+\cdots+a_n}{n}, \eex$$ 且其中的等号当且仅当 $a_1=a_2=\cdots=a_n$ 时成立.
(from F.L. Lan) 有界闭区域上的有界函数的导函数一定有有界吗?
设 $B_t$ 是以 $0$ 为起点的布朗运动, 则 $$\bee\label{ju} E\sez{B_t^{2k+1}}=0,\quad E\sez{B_t^{2k}}=\frac{(2k)!t^k}{2^kk!}=(2k-1)!!t^k.
1. 设 $0\leq c(x)\leq M$, $f\in L^\infty(\Omega)$, $u\in H^1(\Omega)\cap L^\infty(\Omega)$ 是方程 \[ -\mbox{div }(|\nabla u|^{p-2}\nabla u)+c(x)|u|^{p-2}u=f \] 的弱下解, 其中 $p\geq 2$.