[再寄小读者之数学篇](2014-06-20 求极限---积分中值定理的应用)

简介: 证明: 当 $m0}\\ &=\lim_{x\to0^+}\cfrac{\sex{\xi_x\cos\cfrac{1}{\xi_x}}\cdot x}{x^m}\\ &=0. \eea \eeex$$

证明: 当 $m<2$ 时, $\dps{\lim_{x\to 0^+}\cfrac{1}{x^m}\int_0^x \sin \cfrac{1}{t}\rd t=0}$.  

 

证明: $$\beex \bea \lim_{x\to 0^+}\cfrac{1}{x^m}\int_0^x \sin \cfrac{1}{t}\rd t &=\lim_{x\to 0^+} \cfrac{1}{x^m} \int_0^x t^2\rd \cos \cfrac{1}{t}\\ &=\lim_{x\to 0^+} \cfrac{1}{x^m} \sex{x^2\cos\cfrac{1}{x} -\int_0^x 2t\cos\cfrac{1}{t}\rd t}\\ &=-2\lim_{x\to 0^+} \cfrac{\int_0^x t\cos \cfrac{1}{t}\rd t}{x^m}\quad\sex{2-m>0}\\ &=\lim_{x\to0^+}\cfrac{\sex{\xi_x\cos\cfrac{1}{\xi_x}}\cdot x}{x^m}\\ &=0. \eea \eeex$$

目录
相关文章
开区间下的积分中值定理证明方法
开区间下的积分中值定理证明方法
380 0
开区间下的积分中值定理证明方法
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-24 积分不等式)
(AMM. Problems and Solutions. 2015. 01) Let $f$ be a twice continuously differentiable function from $[0,1]$ into $\bbR$.
593 0
[再寄小读者之数学篇](2014-12-24 乘积型不等式)
$$\bex \int f^2g \leq C\sen{f}_{L^2}^\frac{5q-4}{3q-2} \sen{\p_3f}_{L^q}^\frac{q}{3q-2} \sen{g}_{L^2}^\frac{q-2}{3q-2} \sen{\n_hg}_{L^2}^\frac{2q}{3q-...
842 0
[再寄小读者之数学篇](2014-11-24 积分中值定理)
积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理.
679 0
[再寄小读者之数学篇](2014-10-27 无穷多个无穷小量相乘还是无穷小量么?)
无穷多个无穷小量相乘还是无穷小量么?   解答: 不一定. 比如 $$\bex \ba{ll} \mbox{第 1 个:}&1,\cfrac{1}{2},\cfrac{1}{3},\cfrac{1}{4},\cdots;\\ \mbox{第 2 个:}&1,2,\cfrac{1}{3},\cfr...
767 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-10-18 利用 Lagrange 中值定理求极限)
试求 $$\bex \vlm{n}n^2\sex{x^\frac{1}{n}-x^\frac{1}{n+1}},\quad x>0. \eex$$   解答: $$\beex \bea \mbox{原极限} &=\vlm{n}n^2\cdot x^\xi\ln x\sex{\frac{1}{n}...
634 0
[再寄小读者之数学篇](2014-07-09 不可约多项式与重根)
设 $\mathbb{P}$ 为数域, 如果 $p_1(x),\cdots,p_r(x)$ 是数域 $\mathbb{P}$ 上的 $r$ 个两两不同的首相系数为 $1$ 的不可约多项式, 证明: $f(x)=p_1(x)\cdots p_r(x)$ 在数域 $\mathbb{P}$ 上无重根.
766 0
[再寄小读者之数学篇](2014-06-18 微分、积分中值定理一起来)
设 $f$ 在 $[0,1]$ 上可微, 且满足条件 $\dps{f(1)=3\int_0^{1/3} e^{x-1}f(x)\rd x}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f(\xi)+f'(\xi)=0$.
806 0