[家里蹲大学数学杂志]第267期实变函数总结性教程

简介: 1 可测函数   1.1可测函数与简单函数的关系 $$\beex \bea f\mbox{ 非负可测}&\ra \exists\ 0\leq \phi_k\nearrow f,\\ f\mbox{ 有界可测}&\ra \exists\ \phi_k\rightrightarrows f,\\ f\mbox{ 一般可测}&\ra \exists\ \phi_k\to f.

1 可测函数

 

1.1可测函数与简单函数的关系

$$\beex \bea f\mbox{ 非负可测}&\ra \exists\ 0\leq \phi_k\nearrow f,\\ f\mbox{ 有界可测}&\ra \exists\ \phi_k\rightrightarrows f,\\ f\mbox{ 一般可测}&\ra \exists\ \phi_k\to f. \eea \eeex$$ 简言之, 非负可测 $\ra$ 递增逼近; 有界可测 $\ra$ 一致逼近; 一般可测 $\ra$ 点态逼近.

 

1.2 可测函数与连续函数的关系 (Lusin 定理)

$$\bex f\ae\mbox{ 有限, 可测}\ra \forall\ \delta>0,\ \exists\ F\subset E,\ m(E\bs F)<\delta, f|_F\mbox{ 连续}. \eex$$ 简言之, $f\ae$ 有限, 可测 $\ra$ $f$ 基本上连续.

 

1.3 可测函数的各种收敛

其中,

(1) Egrov 定理: $$\bex \serd{\ba{ll} mE<\infty\\ f_k\ae\mbox{ 收敛于 }f \ea}\ra f_k\mbox{ 基本上一致收敛于 }f. \eex$$

(2) Lebesgue 定理: $$\bex \serd{\ba{ll} mE<\infty\\ f_k\ae\mbox{ 收敛于 }f \ea}\ra (f_k\ra f). \eex$$

(3) Riesz 定理: $$\bex (f_k\ra f)\ra \exists\ \sed{k_j},\st f_{k_j}\ae\mbox{ 收敛于 }f. \eex$$

 

2 Lebesgue 积分

 

2.1 非负可测函数的积分

 

(1) Levi 定理: $$\bex 0\leq f_k\nearrow f\ra \int \lim f_k=\lim \int f_k. \eex$$

(2) 逐项积分: $$\bex 0\leq f_k\ra \int_E \sum f_k=\sum \int_E f_k. \eex$$

(3) Fatou 引理: $$\bex 0\leq f_k\ra \int_E\varliminf f_k\leq \varliminf \int_E f_k. \eex$$

(4) Fubini 定理: $$\bex 0\leq f\ra \int_{A\times B}f=\int_A\int_B f. \eex$$

 

2.2 一般可测函数的积分

(1) 积分的绝对连续性 (AC): $$\bex f\in L(E)\ra {\forall\ \ve>0,\ \exists\ \delta>0,\ \forall\ A\subset E: mA<\delta,\atop\mbox{ 有 }\sev{\int_A f(x)\rd x} \leq \int_A|f(x)|\rd x<\ve.} \eex$$

(2) Lebesgue 控制收敛: $$\bex \serd{\ba{ll} |f_i|\leq F,\quad F\in L(E)\\ f_i\to f,\ae\mbox{ 于 }E \ea}\ra\sedd{\ba{ll} \lim_{i\to\infty}\int_E|f_i(x)-f(x)|\rd x=0\\ \lim_{i\to\infty}\int_E f_i(x)\rd x =\int_E f(x)\rd x. \ea} \eex$$

(3) 依测度控制收敛: $$\bex \serd{\ba{ll} |f_i|\leq F,\quad F\in L(E)\\ f_i\ra f \ea}\ra\sedd{\ba{ll} \lim_{i\to\infty}\int_E|f_i(x)-f(x)|\rd x=0\\ \lim_{i\to\infty}\int_E f_i(x)\rd x =\int_E f(x)\rd x. \ea} \eex$$

(4) 逐项积分:$$\bex \serd{\ba{ll} f_i\in L(E)\\ \sum_{i=1}^\infty \int_E|f_i(x)|\rd x<+\infty \ea}\ra\sedd{\ba{ll} \sum_{i=1}^\infty f_i(x),\ae \mbox{ 收敛, 于 }E\\ \int_E\sum_{i=1}^\infty f_i(x)\rd x =\sum_{i=1}^\infty \int_Ef_i(x)\rd x. \ea} \eex$$

(5) 积分号下求导: 设 $f(x,t)$ 是 $E\times (a,b)$ 上的实函数, 则 $$\bex \serd{\ba{ll} f(\cdot,t)\in L(E),\quad \forall\ t\\ f(x,\cdot)\mbox{ 可导}, \sev{\frac{\p f}{\p t}(x,\cdot)}\leq F(x),\ae\mbox{ 于 }E,\quad F\in L(E) \ea}\\ \ra \frac{\rd}{\rd t}\int_E f(x,t)\rd x =\int_E \frac{\p}{\p t}f(x,t)\rd x. \eex$$

(6) Fubini 定理: $$\bex f\in L(A\times B)\ra \int_{A\times B}f=\int_A\int_Bf. \eex$$

 

2.3 Lebesgue 积分与 Riemann 积分的关系

$$\bex R[a,b]\subset L[a,b],\quad R^+[a,\infty)\subset L^+[a,+\infty). \eex$$

 

附言

若需更详细的, 请参阅 《家里蹲大学数学杂志第4卷第253期, 实变函数讲义》. 

目录
相关文章
|
Perl 定位技术
家里蹲大学数学杂志第7卷第481期一道实分析题目参考解答
(1) Define what it means for a set $A\subset \bbR^2$ to have zero content. (2) Prove the following result: Let $g:[a,b]\to\bbR$ be bounded and integrable.
647 0
|
Perl 关系型数据库 RDS
[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答
  1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ.
1141 0
|
Perl 资源调度
[家里蹲大学数学杂志]第392期中山大学2015年泛函分析考博试题回忆版
1. ($12'$) 求 $L^p(\bbR)$, $1\leq p\sigma}f_n(t)\rd t=0,\quad \forall\ \sigma>0. \eex$$ 试证: $$\bex f_n\to \delta,\mbox{ in }\mathcal{D}'(\bbR).
903 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答
  1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}...
1103 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第389期中国科学院大学2014-2015-1微积分期中考试试题参考解答
  1. 设 $A,B,C$ 都是集合 $M$ 的子集, 请证明: $$\bex (C\subset A)\wedge (C\subset B)\lra (C\subset A\cap B). \eex$$   证明: 显然成立.
1246 0
|
资源调度 Perl
[家里蹲大学数学杂志]第328期詹兴致矩阵论习题参考解答
说明:  1. 大部分是自己做的, 少部分是参考文献做的, 还有几个直接给出参考文献. 2. 如果您有啥好的想法, 好的解答, 热切地欢迎您告知我, 或者在相应的习题解答网页上回复. 哪里有错误, 也盼望您指出.
1364 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2014-10-09 家里蹲大学数学杂志第310期第7题第1小题修正)
当 $x>0$ 时, 由 $$\beex \bea \int_0^\infty e^{-x\sex{t+\frac{1}{t}}}\rd t &\leq \int_0^1 e^{-\frac{x}{t}}\rd t +\int_1^\infty e^{-xt}\rd t\\ &=\int_1^\in...
692 0
[家里蹲大学数学杂志]第240期钟玉泉编复变函数总复习纲要
第240期_钟玉泉编复变函数总复习纲要   下载后请自行打印、预览或学习, 不要到处传播于网络, 更不要用于商业用途.
807 0
[家里蹲大学数学杂志]第261期安徽大学2008年高等代数考研试题参考解答
1 ($20'=5\times 4'$) 填空题. (1)设 $$\bex \sex{\ba{ccc} 1&1&-1\\ 0&2&2\\ 1&-1&0 \ea}X=\sex{\ba{ccc} 1&-1&1\\ 1&1&0\\ 2&1&1 \ea}, \eex$$ 则 $X=?$ 解答: $$\b...
957 0
[家里蹲大学数学杂志]第293期_偏微分方程基础教程
第293期_偏微分方程基础教程   摘要: 本文给出了 L.C. Evans 的 前三章的学习笔记及习题全部解答.   下载提示: 点击链接后, 拉到最下端, 看见 ”正在获取下载地址“, 等待后点击”中国电信下载“即可.
866 0