贝叶斯推理导论:如何在‘任何试验之前绝对一无所知’的情况下计算概率
这篇文章探讨了贝叶斯推理的发展历史,从帕斯卡尔和费马的早期工作到托马斯·贝叶斯、皮埃尔-西蒙·拉普拉斯和哈罗德·杰弗里斯的贡献。文章指出,贝叶斯分析经历了从使用均匀先验到发展更为客观的方法,如杰弗里斯先验的过程。它讨论了费雪对逆概率的批评,以及贝叶斯方法在处理不确定性问题上的优势。文章还介绍了如何通过匹配覆盖率来评估先验分布的合理性,并通过几个例子展示了不同先验在二项分布和正态分布问题中的应用。最后,文章提出了贝叶斯分析在统计学中的地位,强调了在缺乏先验知识时建立良好先验的重要性,并讨论了主观性和客观性在统计推理中的角色。