[再寄小读者之数学篇](2014-06-19 微分等式的结论)

简介: 证明: $\dps{\int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd t}\rd x=0}$.     证明: $$\beex \bea \int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd ...

证明: $\dps{\int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd t}\rd x=0}$.  

 

证明: $$\beex \bea \int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd t}\rd x &=\int_0^{2\pi} \int_0^t \cfrac{\sin t}{t}\rd x\rd t\\ &=\int_0^{2\pi} \cfrac{\sin t}{t}\cdot t\rd t\\ &=\int_0^{2\pi}\sin t\rd t\\ &=0. \eea \eeex$$

目录
相关文章
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 多项式)
多项式 $$\bex p(z)=z^n+a_{n-1}x^{n-1}+\cdots+a_0 \eex$$ 的根的估计.
569 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
633 0
[再寄小读者之数学篇](2014-07-16 任意阶导数在零处为零的一个充分条件)
设 $f(x)$ 在 $\bbR$ 上任意阶可导, 且 $$\bex \forall\ n\in\bbZ^+,\ f\sex{\frac{1}{n}}=0. \eex$$ 试证: $f^{(n)}(0)=0$.
842 0
[再寄小读者之数学篇](2014-07-16 两个条件给出二阶导中值)
设 $f(x)$ 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 则对 $\forall\ x\in [a,b]$, 存在 $\xi\in (a,b)$, 使得 $$\bex f(x)=\frac{f''(\xi)}{2}(x-a)(x-b).
523 0
[再寄小读者之数学篇](2014-07-16 凹函数与次线性性)
设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)
554 0
[再寄小读者之数学篇](2014-07-16 与对数有关的不等式)
试证: $$\bex (1+a)\ln (1+a)+(1+b)\ln (1+b)0. \eex$$   提示:  对函数 $f(x)=x\ln x$, 有 $$\bex f'(x)=\ln x+1,\quad f''(x)=\frac{1}{x}>0,\quad (x>0).
633 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
570 0
[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛)
设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数. 证明: 由 $f\in L(\bbR)$ 知 $|f|\in L(\bbR)$ (see [程其襄, 张奠宙, 魏国强, 胡善文, ...
717 0
[再寄小读者之数学篇](2014-06-23 向量公式)
$$\bex \n\times({\bf a}\times{\bf b})=({\bf b}\cdot\n){\bf a} -({\bf a}\cdot\n){\bf b}+{\bf a}(\n\cdot{\bf b})-{\bf b}(\n\cdot{\bf a}).
535 0
[再寄小读者之数学篇](2014-06-21 微分不等式)
Assume that $a$ is a positive constant, $x(t),y(t)$ are two nonnegative $C^1(\bbR^+)$ functions, and $D(t)$ is a nonnegative function, satisfying $$\b...
579 0