[家里蹲大学数学杂志]第294期微分方程与数学物理问题习题集

简介: 第294期_微分方程与数学物理问题习题集   摘要: 本文给出了作者于 2011 年 10 月 10 日至 2011 年 10 月 31 日 看 Nail H. Ibragimov 的 时留下的习题全部解答.

 

第294期_微分方程与数学物理问题习题集

 

摘要: 本文给出了作者于 2011 年 10 月 10 日至 2011 年 10 月 31 日 看 Nail H. Ibragimov 的 <微分方程与数学物理问题: 经典方法和现代新方法, 非线性数学物理问题, 对称性和不变性理论> 时留下的习题全部解答.

 

下载提示: 点击链接后, 拉到最下端, 看见 ”正在获取下载地址“, 等待后点击”中国电信下载“即可. 下载后请自行打印与学习, 不要到处传播于网络, 更不要用于商业用途.

目录
相关文章
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
786 0
[家里蹲大学数学杂志]第413期插值不等式
设 $$\bex k\geq 2,\quad f\in C^k(\bbR),\quad M_j=\sup_{x\in\bbR}|f^{(j)}(x)|\ (j=0,1,\cdots,k). \eex$$ 则 $$\bex M_j\leq 2^\frac{j(k-j)}{2}M_0^{1-\frac{j}{k}}M_k^\frac{j}{k}\ (j=0,1,\cdots,k).
761 0
|
Perl
[家里蹲大学数学杂志]第410期定积分难题
  1. (1). 设 $x\geq 0$, $n$ 为自然数, 证明: $$\bex x^n\geq n(x-1)+1; \eex$$ (2). $\forall\ n$, 求证: $$\bex \int_0^{1+\frac{2}{\sqrt{n}}}x^n\rd x>2; \eex$$ (3).
825 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1029 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2014-10-09 家里蹲大学数学杂志第310期第7题第1小题修正)
当 $x>0$ 时, 由 $$\beex \bea \int_0^\infty e^{-x\sex{t+\frac{1}{t}}}\rd t &\leq \int_0^1 e^{-\frac{x}{t}}\rd t +\int_1^\infty e^{-xt}\rd t\\ &=\int_1^\in...
692 0
[家里蹲大学数学杂志]第240期钟玉泉编复变函数总复习纲要
第240期_钟玉泉编复变函数总复习纲要   下载后请自行打印、预览或学习, 不要到处传播于网络, 更不要用于商业用途.
807 0
|
前端开发 rax Perl
[家里蹲大学数学杂志]第243期对合矩阵的两个性质
设 $n$ 阶矩阵 $A$ 满足 $A^2=E$. 证明: (1) $A$ 相似于形如 $\dps{\sex{\ba{cc} E_s&\\ &-E_{n-s} \ea}}$ 的矩阵; (2) 对于任何正整数 $m,k$, 都有 $$\bex \rank(A+E)^m+\rank(A-E)^k=n.
647 0
[家里蹲大学数学杂志]第244期多项式互素与空间直和
设 $f(x),g(x)$ 为数域 $\bbF$ 上的多项式, 且有 $(f(x),g(x))=1$, $A$ 是 $\bbF$ 上的一方阵. 再设 $f(A)g(A)x=0$, $f(A)x=0$, $g(A)x=0$ 的解空间分别为 $W$, $V_1$ 和 $V_2$.
741 0
|
Perl
[家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$.
668 0
[家里蹲大学数学杂志]第051期乘积与复合函数的高阶微分
1 对 $k$ 阶连续可微函数 $f$, $g$, Leibniz 告诉我们 $$\bex D^k_x(fg)=\sum_{s=0}^k\frac{k!}{(k-s)!s!}D^{k-s}_x(f)\cdot D^s_x(g).
690 0