[家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 随机偏微分方程   Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probability space satisfying the usual conditions.

 

随机偏微分方程

 

Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probability space satisfying the usual conditions.  

1. Recall the following results:  

a)         The Doob maximal inequality: if $(N_t)$ is a non-negative $\calF_t$-submartingale with $N_0=0$, then for $1<p<\infty$, $$\bex E\sez{\sup_{0\leq t\leq T}\sev{N_t}^p} \leq \sex{\frac{p}{p-1}}^p E\sez{\sev{N_T}^p}. \eex$$

b)        The set $\calS$ of simple processes is dense in the Hilbert space $\sex{\calH,\ \sen{\cdot}_{\calH}}$, where $$\bex \calS:=\left\{\xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t):\ 0=t_0<t_1<\cdots<t_n\leq T,\right.\\ \left.\xi_k\in\calF_{t_k},\ \sup_k\sen{\xi_k}_\infty<\infty\right\}, \eex$$ and $$\bex \calH:=\left\{H:\ [0,T]\times\Omega \to \bbR \mbox{ is continuous and } \calF_t\mbox{-adapted}:\right.\\ \left. \sen{H}_{\calH}^2 := E\sez{\int_0^T\sev{H(s)}^2\rd s}<\infty\right\}. \eex$$  Set $$\bex \calM:=\left\{ M=(M_t)_{t\in [0,T]} \mbox{ is continuous } \calF_t\mbox{-martingales such that } \right.\\ \left. \sen{M}_\calM^2 :=\sup_{0\leq t\leq T} E\sez{\sev{M_t}^2} <+\infty \right\}. \eex$$ Then $(\calM,\sen{\cdot}_\calM)$ is a Hilbert space.  Let $\xi:\ [0,T]\times \Omega\to \bbR$ be the simple process given by $$\bex \xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t), \eex$$ where $0=t_0<t_1<\cdots<t_n=T$, and $\xi_k\in \calF_{t_k}$ such that $\dps{\sup_k \sev{\xi_k}<\infty}$. Define $$\bex M_t=\int_0^t\xi_k\rd W_s :=\sum_{k=0}^n \xi_k\sex{W_{t_{k+1}\wedge t-W_{t_k\wedge t}}}, \eex$$  

a)          Prove that $M_t$ is a continuous $\calF_t$-martingale.

b)         Prove the It\^o's isometry identity: $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t\sev{\xi_s}^2\rd s}. \eex$$

c)        Using the Doob maximal inequality, prove that $$\bex E\sez{\sup_{0\leq t\leq T} \sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{\xi_s}^2\rd s}. \eex$$

d)        Given $H\in \calH$, let $H_n\in \calS$ be a sequence such that $\sen{H_n-H}_{\calH}\to 0$ as $n\to\infty$. Prove that $\dps{M_t^n =\int_0^t H_n(s)\rd W_s}$ is a Cauchy sequence in $\sex{\calM,\sen{\cdot}_\calM}$. Let $M$ be the limit of $\sed{M_n(t);\ t\in [0,T]}$ in $\sex{\calM,\sen{\cdot}_\calM}$. Prove that this limit does not depend on the choice of the sequence $H_n$ which tends to $H$ in $\sex{\calH,\sen{\cdot}_\calH}$. Denote by $\dps{M_t:=\int_0^t H(s)\rd W_s}$, i.e. $$\bex \int_0^t H(s)\rd W_s =\lim_{n\to\infty} \int_0^t H_n(s)\rd W_s,\mbox{ in } \sex{\calM,\sen{\cdot}_\calM}. \eex$$

e)         Prove that $\dps{M_t=\int_0^t H(s)\rd W_s}$ is a $\calF_t$-martingale and satisfies $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t \sev{H(s)}^2\rd s}, \eex$$ and $$\bex E\sez{\sup_{0\leq t\leq T}\sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{H(s)}^2\rd s}. \eex$$

f)         Using the Borel-Cantelli lemma, prove that $ P$-a.s., $M=(M_t)\in C([0,T];\bbR)$.

 

2. Consider the following SDE on $\bbR^m$: $$\bex \rd X_t=\rd W_t-\n V(X_t)\rd t,\quad X_0=x, \eex$$ where $V\in C_b^2(\bbR^m)$. Fix $T>0$. Suppose that $u(t,x)\in C_b^{1,2}([0,T]\times\bbR^m,\bbR)$ is a solution of the heat equation $$\bex \left\{\ba{ll} \frac{\p u}{\p t}(t,x) =\frac{1}{2}\lap u(t,x) -\sef{\n V(x),\n u(t,x)},&\mbox{in }[0,T)\times \bbR^m,\\ u(0,x)=f(x),&x\in \bbR^m, \ea\right. \eex$$ where $f\in C_b(\bbR^m)$. Applying It\^o's formula to $u(T-t,X_t)$, prove that $$\bex u(t,x)= E_x\sez{f(X_t)},\quad \forall\ t\geq 0,\ x\in \bbR^m. \eex$$  

 

3. Consider the following SPDE on $[0,T]\times S^1$: $$\bee\label{1} \frac{\p}{\p t}u(t,x) =\lap u+\dot W(t,x), \eee$$ where $t\in [0,\infty)$ and $x\in S^1=[0,2\pi]$, $\dps{\lap=\frac{\p^2}{\p x^2}}$ is the Laplace operator on $S^1$, and $W(t,x)$ is the space-time white noise on $[0,\infty)\times S^1$.  Recall that $\lap$ is a compact operator on $L^2(S^1,\rd x)$ and the spectral of $\lap$ is given by $$\bex \mbox{Sp}(\lap)=\sed{-n^2;\ n\in \bbN}. \eex$$ Indeed, let $$\bex e_{2n}(x)=\frac{1}{\sqrt{\pi}}\cos(nx),\quad e_{2n+1}(x)=\frac{1}{\sqrt{\pi}} \sin (nx),\quad n\in\bbN,\ x\in S^1. \eex$$  Then $$\bex \lap e_{2n}=-n^2 e_{2n},\quad \lap e_{2n+1}=-n^2e_{2n+1},\quad \forall\ n\in\bbN. \eex$$ The set $\sed{e_n}$ consists of a complete orthonormal basis of $L^2(S^1,\rd x)$. Write $$\bex W(t,x)=\sum_{n=1}^\infty W_n(t)e_n(x), \eex$$ where $W_n(t)$ are i.i.d Brownian motion on $\bbR^1$.

(a) Let $$\bex X_t(\cdot) =u(t,\cdot)\in L^2(S^1,\rd x). \eex$$ Prove that $X_t$ satisfies the Ornstein-Uhlenbeck SDE on $L^2(S^1,\rd x)$: $$\bex \rd X_t=\lap X_t+\rd W_t, \eex$$ and $\dps{W_t=\sum_{n=0}^\infty W_n(t)e_n}$ is the cylinder Brownian motion on $L^2(S^1,\rd x)$.  

(b) Let $\dps{u(t,x)=\sum_{n\in \bbN} u_n(t)e_n(x)}$ be the orthogonal decomposition of $u(t,\cdot)$ in $L^2(S^1,\rd x)$. Prove that $u_n(t)$ satisfies the Langevin SDE on $\bbR$: $$\bex \rd u_n(t)=-n^2 u_n(t)\rd t+\rd W_n(t), \eex$$ and solve this Langevin SDE with initial condition $u_n(0)=u_n\in \bbR$.  

© Find the mild solution to the SPDE \eqref{1} with initial condition $\dps{u(0,x)=\sum_{n=0}^\infty u_ne_n(x)}$ for $\dps{\sum_{n=0}^\infty \sev{u_n}^2<+\infty}$.  

(d) Recall that the domain of $\lap$ is given by $$\bex H_0=\left\{u=\sum_{n=1}^\infty u_ne_n\in L^2(S^1,\rd x);\ u_n=\sef{u,e_n},\right.\\ \left.\mbox{ and } \sum_{n=1}^\infty n^2 \sev{u_n}^2<\infty\right\} . \eex$$ Let $$\bex \rd \mu(u)=\prod_{n=1}^\infty \frac{n}{\sqrt{2\pi}} \mbox{exp}\sez{-\frac{n^2\sev{u_n}^2}{2}}\rd u_n. \eex$$ Prove that $\mu$ is a Gaussian measure on $(H,\calB(H))$ with mean zero and with covariance matrix $Q=\sex{q_{ij}}_{\bbN\times\bbN}$ with $$\bex q_{ij}=\frac{1}{i^2}\delta_{ij}, \eex$$ i.e., $\mu=\calN(0,Q)$.  Formally we write $$\bex Q=\sex{-\lap}^{-1},\quad \mu=\calN(0,\sex{-\lap}^{-1}). \eex$$

(e) Prove that $\mu$ is an invariant measure for the Ornstein-Uhlenbeck processs $X_t$ on $L^2(S^1,\rd x)$.  

(f) (Not required) Prove that $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck process $X_t$ on $L^2(S^1,\rd x)$.  

 

可压 Navier-Stokes 方程

 

1. Consider the compressible fluid flow with damping: $$\bex \left\{\ba{ll} \p_t\rho+\Div(\rho\bbu)=0,\\ \p_t(\rho\bbu)+\Div\sex{\rho\bbu\otimes\bbu} +\n p=-\rho\bbu. \ea\right. \eex$$ Can this system satisfy Kawashima's condition?

2. Follow the similar analysis for Lemma 2.1 to prove (2.18) in Proposition 2.2.

3. Give the details of the proof of Lemma 3.1.

4. Give the details of the proof of Theorem 5.3.

5. Give the complete proof of Lemmas 6.4 and 6.5.

 

几何分析 [参考答案链接]

1.(15') 设 $R(X,Y):\ \calX(M)\to \calX(M)$ 为曲率, 求证:  

(1) $R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2$,  $\forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty (M)$;

(2) $R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0$,  $\forall\ X,Y,Z\in \calX(M)$.  

 

2.(10') 设 $V(t),\ J(t)$ 是沿最短测地线 $\gamma(t),\ t\in [0,1]$ 的向量场, 它们满足 $$\bex V(t)\perp \dot\gamma(t),\quad J(t)\perp \dot\gamma(t),\quad V(0)=J(0),\quad V(1)=J(1), \eex$$ 且 $J(t)$ 是 Jacobi 场, 求证: $$\bex I(J,J)\leq I(V,V), \eex$$ 其中 $I$ 为 $\gamma$ 上的指标形式.  

 

3.(10') 设 $\gamma(t):\ (-\infty,+\infty)\to M$ 为一条测地直线, 相应地记 $$\bex \gamma_+=\gamma|_{[0,+\infty)},\quad \gamma_-=\gamma|_{(-\infty,0]} \eex$$ 及两 Busemann 函数 $$\bex B_{\gamma_+}(x)=\lim_{t\to+\infty}\sez{d(x,\gamma(t))-t}; \eex$$ $$\bex B_{\gamma_-}(x)=\lim_{t\to-\infty}\sez{d(x,\gamma(t))+t}. \eex$$ 求证: $$\bex B_{\gamma_+}+B_{\gamma_-}=0,\quad\mbox{在 } \gamma \mbox{ 上}; \eex$$ $$\bex B_{\gamma_+}+B_{\gamma_-}\geq 0,\quad\mbox{在 } M \mbox{ 上}. \eex$$  

 

4.(15') 设 $M$ 为紧流形, 再设 $g_{ij}(t)$ 满足 Ricci 流, 且 $f(t),\tau(t)$ 满足 $$\bex \frac{\p }{\p t}f=-\lap f+\sev{\n f}^2-R+\frac{n}{2\tau},\quad \frac{\p }{\p t}\tau =-1. \eex$$ 求证:  

(1) $$\bex \frac{\rd}{\rd t}\int_M \sex{4\pi \tau}^{-\frac{n}{2}} e^{-f}\, \rd vol_{g_{ij}}=0; \eex$$

(2) $$\bex & &\frac{\rd }{\rd x}\int_M  \sez{\tau \sex{R+\sev{\n f}^2} +f-n}(4\pi^\tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}\\ & &=\int_M 2\tau \sev{R_{ij}+\n_i\n_j f-\frac{1}{2\tau}g_{ij}}^2 (4\pi \tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}. \eex$$ 

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
Perl 定位技术
家里蹲大学数学杂志第7卷第481期一道实分析题目参考解答
(1) Define what it means for a set $A\subset \bbR^2$ to have zero content. (2) Prove the following result: Let $g:[a,b]\to\bbR$ be bounded and integrable.
647 0
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
786 0
|
Perl 关系型数据库 RDS
[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答
  1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ.
1141 0
[家里蹲大学数学杂志]第413期插值不等式
设 $$\bex k\geq 2,\quad f\in C^k(\bbR),\quad M_j=\sup_{x\in\bbR}|f^{(j)}(x)|\ (j=0,1,\cdots,k). \eex$$ 则 $$\bex M_j\leq 2^\frac{j(k-j)}{2}M_0^{1-\frac{j}{k}}M_k^\frac{j}{k}\ (j=0,1,\cdots,k).
761 0
|
Web App开发
[家里蹲大学数学杂志]第394期分组求积分因子法
在第 2.3 节中, 我们已经知道, 对 $$\bee\label{ode} M(x,y)\rd x+N(x,y)\rd y=0 \eee$$而言,   1. 若 $M_y=N_x$, 则 \eqref{ode} 为恰当 ode, 而可通过求解 pde 组 $$\bex u_x=M,\quad u_y=N \eex$$ 求出 $u$, 而 \eqref{ode} 的通解为 $u=C$.
915 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1031 0
[家里蹲大学数学杂志]第204期矩阵空间的一个直和分解
设 $M_n(\bbF)$ 是数域 $\bbF$ 上 $n$ 阶矩阵全体构成的线性空间, $V,W$ 分别是上三角矩阵、反对称矩阵全体构成的线性子空间, 则 $$\bex M_n(\bbF)=V\oplus W.
731 0
|
移动开发
[家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零
设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}
765 0
[家里蹲大学数学杂志]第244期多项式互素与空间直和
设 $f(x),g(x)$ 为数域 $\bbF$ 上的多项式, 且有 $(f(x),g(x))=1$, $A$ 是 $\bbF$ 上的一方阵. 再设 $f(A)g(A)x=0$, $f(A)x=0$, $g(A)x=0$ 的解空间分别为 $W$, $V_1$ 和 $V_2$.
742 0
|
前端开发 rax Perl
[家里蹲大学数学杂志]第243期对合矩阵的两个性质
设 $n$ 阶矩阵 $A$ 满足 $A^2=E$. 证明: (1) $A$ 相似于形如 $\dps{\sex{\ba{cc} E_s&\\ &-E_{n-s} \ea}}$ 的矩阵; (2) 对于任何正整数 $m,k$, 都有 $$\bex \rank(A+E)^m+\rank(A-E)^k=n.
649 0