[再寄小读者之数学篇](2014-06-20 求积分)

简介: 设 $n\in\bbN^+$, 计算积分 $\dps{\int_0^{\pi/2} \cfrac{\sin nx}{\sin x}\rd x}.$     解答: (1) 由 $$\beex \bea 2\sin x\cdot \cfrac{1}{2}&=\sin x,\\ 2\sin x\cd...

设 $n\in\bbN^+$, 计算积分 $\dps{\int_0^{\pi/2} \cfrac{\sin nx}{\sin x}\rd x}.$  

 

解答: (1) 由 $$\beex \bea 2\sin x\cdot \cfrac{1}{2}&=\sin x,\\ 2\sin x\cdot \cos 2x&=\sin 3x-\sin x,\\ 2\sin x\cdot \cos 4x&=\sin 5x-\sin 3x,\\ \cdots&=\cdots,\\ 2\sin x\cdot \cos 2nx&=\sin (2n+1)x-\sin(2n-1)x \eea \eeex$$ 知 $$\bex 2\sin x\sex{\cfrac{1}{2}+\sum_{k=1}^n \cos 2kx}=\sin (2n+1)x. \eex$$ 于是 $$\bex \int_0^{\pi/2}\cfrac{\sin (2n+1)x}{\sin x}\rd x =\int_0^{\pi/2} \sex{1+2\sum_{k=1}^n \cos 2kx}\rd x =\cfrac{\pi}{2}. \eex$$ (2) 由 $$\beex \bea 2\sin x\cos x&=\sin 2x,\\ 2\sin x\cos 3x&=\sin 4x-\sin 2x,\\ 2\sin x\cos 5x&=\sin 6x-\sin 4x,\\ \cdots&=\cdots,\\ 2\sin x\cos(2n-1)x&=\sin 2nx-\sin(2n-2)x \eea \eeex$$ 知 $$\bex 2\sin x\sum_{k=1}^n \cos (2k-1)x=\sin 2nx. \eex$$ 于是 $$\bex \int_0^{\pi/2} \cfrac{\sin 2nx}{\sin x}\rd x =2\int_0^{\pi/2} \sum_{k=1}^n \cos(2k-1)x\rd x =2\sum_{k=1}^n \cfrac{(-1)^{k-1}}{2k-1}. \eex$$

目录
相关文章
《R语言编程艺术》——1.5 扩展案例:考试成绩的回归分析
本节书摘来自华章计算机《R语言编程艺术》一书中的第1章,第1.5节,作者:(美)麦特洛夫(Matloff,N.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。
2011 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-24 积分不等式)
(AMM. Problems and Solutions. 2015. 01) Let $f$ be a twice continuously differentiable function from $[0,1]$ into $\bbR$.
593 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-08 一个有意思的定积分计算)
$$\beex \bea \int_0^\frac{\pi}{4}\ln (1+\tan x)\rd x &=\int_0^\frac{\pi}{4} \ln \frac{\cos x+\sin x}{\cos x}\rd x\\ &=\int_0^\frac{\pi}{4} \ln \sez{\s...
719 0
[再寄小读者之数学篇](2014-11-24 积分中值定理)
积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理.
679 0
[再寄小读者之数学篇](2014-11-20 计算二重积分)
(from X.L. Zhen) 计算二重积分 $$\bex \iint_{\bbR^2}e^{-(x^2+xy+y^2)}\rd x\rd y. \eex$$   解答: $$\beex \bea \iint_{\bbR^2}e^{-(x^2+xy+y^2)}\rd x\rd y &=\iin...
744 0
|
机器学习/深度学习 Windows
[再寄小读者之数学篇](2014-09-22 北京师范大学考研试题---渐近估计)
[裴礼文, 数学分析中的典型问题与方法 (第 2 版), 北京: 高等教育出版社, 2006 年] (Page 436, T 4.5.14) 若函数 $p(t)$ 在 $[0,+\infty)$ 上可积, 且当 $t\to+\infty$ 时, $p(t)=o(t^N)$ ($N$ 为正整数).
843 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2014-06-20 积分号下求导)
设 $f\in C(-\infty,+\infty)$, 定义 $\dps{F(x)=\int_a^b f(x+t)\cos t\rd t}$, $a\leq x\leq b$. (1) 证明: $F$ 在 $[a,b]$ 上可导; (2) 计算 $F'(x)$.
595 0
[再寄小读者之数学篇](2014-06-19 满足三个积分等式的函数)
设 $f$ 为 $[0,1]$ 上的连续非负函数, 找出满足条件 $$\bex \int_0^1 f(x)\rd x=1,\quad \int_0^1 xf(x)\rd x=a,\quad \int_0^1 x^2f(x)\rd x=a^2 \eex$$ 的所有 $f$, 其中 $a$ 为给定实数.
487 0
[再寄小读者之数学篇](2014-06-19 利用分部积分求函数值)
设 $f\in C^2[0,\pi]$, 且 $f(\pi)=2$, $\dps{\int_0^\pi [f(x)+f''(x)]\sin x\rd x=5}$. 求 $f(0)$.     解答: 由 $$\beex \bea 5&=\int_0^\pi [f(x)+f''(x)]\sin x...
544 0