算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10836内容
一文读懂「Attention is All You Need」| 附代码实现
前言 2017 年中,有两篇类似同时也是笔者非常欣赏的论文,分别是 FaceBook 的 Convolutional Sequence to Sequence Learning 和 Google 的 Attention is All You Need,它们都算是 Seq2Seq 上的创新,本质上来说,都是抛弃了 RNN 结构来做 Seq2Seq 任务。
【玩转数据系列十】利用阿里云机器学习在深度学习框架下实现智能图片分类
伴随着今日阿里云机器学习PAI在云栖大会的重磅发布,快来感受下人工智能的魅力。 一、背景 随着互联网的发展,产生了大量的图片以及语音数据,如何对这部分非结构化数据行之有效的利用起来,一直是困扰数据挖掘工程师的一到难题。
深度学习必备手册(上)
深度学习作为人工智能的前沿技术,虽然一方面推动者人工智能的发展;但是人类的终极目标是强人工智能,最近也有一些关于类似于笔者认为的广度学习的出现,但是宗其所属,还是应该在深度学习发展的历史上前进。
卷积神经网络应用:基于Tensorflow的CNN/CRF图像分割技术
本篇文章验证了卷积神经网络应用于图像分割领域时存在的一个问题——粗糙的分割结果。根据像素间交叉熵损失的定义,我们在简化的场景下进行了模型的训练,并使用后向传播来更新权重。我们使用条件随机场(CRFs)来解决分割结果粗糙的问题,并取得了很好的效果。本文中的代码注释详细、功能完善,也便于读者阅读。
| |
来自: 云原生
利用Docker和阿里云容器服务轻松搭建TensorFlow Serving集群
本文是系列中的第二篇文章,将带您快速了解Tensorflow Serving的原理和使用,并利用阿里云容器服务轻松在云端搭建TensorFlow Serving集群。
解读Keras在ImageNet中的应用:详解5种主要的图像识别模型
自从2012年以来,CNN和其它深度学习技术就已经占据了图像识别的主流地位。本文以Keras为例,介绍了5种主要的图像识别模型,并通过实际案例进行详细介绍。
PyTorch vs TensorFlow,哪个更适合你
本文将探讨PyTorch和TensorFlow这两种流行深度学习框架之间的关键相似点和不同点。为什么选择这两个框架,而不是其他的呢?
大神手把手教你:(Python)序列数据的One Hot编码
不懂One Hot编码?让大神手把手教你(文中代码可以直接运行),用小例子清晰明了的带你进入One hot 编码!
高性能深度学习支持引擎实战——TensorRT
随着传统的高性能计算和新兴的深度学习在百度、京东等大型的互联网企业的普及发展,作为训练和推理载体的GPU也被越来越多的使用。NVDIA本着让大家能更好地利用GPU,使其在做深度学习训练的时候达到更好的效果的目标,推出了支持高性能深度学习支持引擎——TensorRT。
免费试用