Flink 在人工智能领域的应用实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink 机器学习进度几何?如何将 Flink 与 TensorFlow 等框架相结合?有哪些 Flink 在机器学习上的生产实践应用?为你呈现 Flink 机器学习的具体应用实践与最新技术落地案例。

人工智能是未来十年最重要的技术革命与驱动力,在各行各业产生着日益重要的作用,它与大数据的发展相辅相成,不仅推动人类社会迈入更智慧的世界,也为数据的应用带来无可估量的价值。

FFA_

11 月 28 - 30 日,Flink Forward Asia 2019 人工智能专场将聚焦于 Flink 在机器学习上的新技术与新应用,内容包含:

  • Flink 机器学习进度几何?
  • 如何将 Flink 与 TensorFlow 等框架相结合?
  • 有哪些 Flink 在机器学习上的生产实践应用?

为你呈现 Flink 机器学习的具体应用实践与最新技术落地案例。

Deep Learning On Apache Flink

陈龙 | Tencent Engineer

本次演讲将介绍一个新的 Flink 项目 dlonflink。它能够使 Flink 具备运行分布式训练和实时更新模型服务的能力,用户不仅可以使用 Scala 开发,而且可以基于 Python,只需修改几行代码即可在 Flink 上运行 TensorFlow,同时也支持 PyToch 和 MXNet。我们将详细介绍 Java 和 Python 之间数据交换相关的设计以及框架管理的实现。

在 Flink 上使用 Analytics-Zoo 进行大数据分析与深度学习模型推理的架构与实践

史栋杰 | 英特尔资深软件架构师

英特尔资深软件架构师。多年从事企业级计算、风控、大数据分析、云计算容器编排、数据分析与人工智能领域的研发,英特尔开源框架 BigDL 与 Analytics-Zoo 的贡献者之一。主要分享内容如下:

  1. Analytics-Zoo 简介:基于 Apache Spark、Tensorflow、Keras 和 BigDL 的大数据分析+AI 平台。
  2. 将大数据上的深度学习应用部署到生产环境,Flink 流处理场景的支持及使用 OpenVINO 加速。
  3. 一种基于消息订阅和 Flink 流处理的 Cluster Serving 架构。

Apache Flink + TensorFlow,携程实时智能异常检测平台实践

潘国庆 | 携程大数据研发经理

随着近几年的发展,实时计算的技术日趋成熟,实时计算的场景也越来越繁多,Flink 也渐渐成为实时计算引擎的首选之一,从简单的实时 ETL 到复杂的 CEP 场景 Flink 都能够很好的驾驭。

本次分享主要介绍携程如何基于 Flink 与 Tensorflow 构建携程实时智能异常检测平台,用于解决规则告警系统准确率低、时效性低、规则配置复杂与耗费人力等诸多问题,实现业务指标毫秒级延迟与智能化检测,依托 Flink 实现了强大的容错机制。

基于 Apache Flink 的机器学习算法平台实践与开源

杨旭 | 阿里巴巴资深算法专家

阿里巴巴计算平台事业部正在与 Flink 社区合作,开源自研的机器学习算法库,基于该算法库,用户可以更方便地构建高性能的 Flink 机器学习作业。我们希望通过开源来促进 Flink 社区在机器学习领域的发展。同时也欢迎更多开发者与我们携手共进,建立更强大、更完整的 Flink 算法库。

本次分享主要围绕团队基于 Flink 研发高性能机器学习算法库过程中的技术积累与收获,以及开源的进展。

Apache Flink AI Ecosystem Effort

陈戊超 | 阿里巴巴技术专家
高赟 | 阿里巴巴技术专家

Flink 是一个分布式计算引擎,支持批流一体的数据处理。在实际生产中的人工智能使用场景中,Flink 在包括特征工程,在线学习,在线预测等方面都有一些独特优势,为了更好的支持人工智能的使用场景,社区以及各个生态厂商都做了一些工作,本演讲将几点介绍近期 Flink 在人工智能生态系统中的工作进展。

  1. Flink ML Pipline: 定义了在 Flink 上运行机器学习工作流程的 API 包括特征工程,模型训练,模型预测等。
  2. Alink:是基于 Flink的机器学习算法库。
  3. Flink ML Workflow:以 Flink 为基础,结合深度学习框架 TensorFlow / PyTorch 为用户提供了串联整个机器学习工作链路中各个阶段的 API,并且同时支持批和流的运行模式。
  4. Streaming-based mini-batch iteration architecture:Flink 在流运行模式下支持迭代的新架构设计。

点击下方链接可了解更多 Flink Forward Asia 2019 大会议程,最后一周,对大会心动的同学抓紧时间购票啦~
https://developer.aliyun.com/special/ffa2019-conference?spm=a2c6h.13239638.0.0.21f27955Rm9hx4

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
7天前
|
人工智能 自然语言处理 搜索推荐
讲解人工智能在现代科技中的应用和未来发展趋势。
讲解人工智能在现代科技中的应用和未来发展趋势。
18 0
|
4天前
|
机器学习/深度学习 数据采集 人工智能
人工智能在医疗诊断中的应用与挑战
随着人工智能技术的飞速发展,其在医疗领域的应用日益广泛。本文将探讨AI在医疗诊断中的具体应用案例,分析其带来的优势和面临的挑战,并展望未来的发展趋势。
|
6天前
|
机器学习/深度学习 传感器 人工智能
ai在气候变化的应用
【7月更文挑战第9天】ai在气候变化的应用
17 3
|
1天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
【7月更文挑战第14天】随着技术的进步,人工智能(AI)已开始在医疗领域扮演关键角色,特别是在疾病诊断方面。AI技术通过分析大量数据,协助医生进行更精准的诊断,从而改善患者治疗结果。然而,AI在医疗诊断中的应用也面临伦理、法律和技术等多重挑战。本文将探讨AI在医疗诊断中的具体应用案例,分析其带来的优势,并讨论当前面临的主要挑战和未来发展趋势。
|
3天前
|
传感器 人工智能 安全
未来智能家居中的人工智能技术应用与发展
智能家居正逐步走向普及,其背后的关键技术——人工智能(AI),正在不断演进和应用。本文将探讨人工智能在智能家居中的重要性、现有技术的应用和未来的发展方向,以及其对用户生活带来的实际影响。 【7月更文挑战第12天】
|
2天前
|
机器学习/深度学习 人工智能 算法
探索未来:人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)在医疗诊断领域的应用,并分析了其对提高诊断准确性和效率的潜力。通过对比传统诊断方法与AI辅助系统的优缺点,文章阐述了AI技术如何助力医生进行更精准的疾病预测和治疗决策。同时,本文也讨论了实施AI系统所面临的挑战,包括数据隐私、算法偏差和技术接受度等问题,并对未来的发展趋势进行了展望。
|
2天前
|
机器学习/深度学习 人工智能 算法
未来AI技术在医疗领域的应用与挑战
随着人工智能技术的迅猛发展,其在医疗领域的应用前景广阔,但同时也面临着诸多挑战。本文探讨了AI技术在医疗中的多个关键应用,分析了其带来的潜在益处和可能的风险,以及如何在未来克服技术和伦理上的挑战。 【7月更文挑战第13天】
|
3天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:AI在系统管理中的应用与挑战
本文将深入探讨人工智能(AI)技术在运维领域的应用,分析其带来的效率提升和成本节约,同时指出实施过程中可能遇到的技术和管理挑战。文章还将提供针对这些挑战的应对策略,以期为运维专业人士提供指导和参考。
|
4天前
|
机器学习/深度学习 存储 人工智能
人工智能在医疗诊断中的应用与挑战
本文将探讨人工智能(AI)在医疗诊断领域的应用及其带来的挑战。我们将分析AI技术如何改变医疗行业的面貌,提高诊断的准确性和效率,同时也会讨论AI在实际应用中面临的伦理、法律和技术问题。通过具体案例和数据分析,我们将深入了解AI在医疗诊断中的潜力与局限。
12 1
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
未来AI技术的发展趋势与应用前景探析
随着人工智能(AI)技术的迅猛发展,未来其应用前景愈发广阔。本文将探讨AI技术在各个领域的最新进展,分析其未来发展趋势,以及对社会、经济的深远影响。 【7月更文挑战第10天】

相关产品

  • 实时计算 Flink版