告别盲目试错!大模型微调核心参数的“油门、档位与里程
本文深入浅出讲解大模型微调三大核心参数:学习率、batch_size、epochs,类比“油门、档位、里程”,帮助新手理解其作用与配合逻辑。结合PyTorch实操案例,提供从基础设置到单参数优化的完整流程,并分享避坑指南与效果评估方法,助力告别盲目试错,实现高效稳定微调。
PyTorch Docker 容器化部署与生产运行实践
本文详细介绍PyTorch的Docker容器化部署方案,涵盖环境准备、镜像拉取、测试与生产环境分级部署、功能验证及优化建议。强调版本固定、非root运行、资源限制与健康检查,结合轩辕镜像加速,确保安全、稳定、高效的深度学习开发与生产环境。
Mosaic:面向超长序列的多GPU注意力分片方案
本文剖析Transformer中“二次方注意力瓶颈”的成因与工程破解之道,聚焦Mosaic提出的多轴注意力分片方案。针对长序列内存爆炸问题,Mosaic通过灵活路由不同轴至本地或分布式后端(如Ring、Mesh2D),实现高效计算与通信平衡,尤其适用于表格等多维数据场景,显著降低显存占用且不侵入模型代码。
基于深度学习的水稻病虫害检测系统
水稻是全球半数人口的主食,病虫害导致年减产20%-40%。传统识别依赖人工,效率低、误判率高。深度学习技术,尤其是YOLOv8模型,可实现快速精准检测,提升防治效率,降低损失。结合Python生态与高质量标注数据集,构建智能检测系统,助力农业智能化与可持续发展,保障粮食安全。