llama factory 从数据集起步 跑通 qwen系列开源生成式大模型 微调
`dataset_info.json` 文件用于管理 llama factory 中的所有数据集,支持 `alpaca` 和 `sharegpt` 格式。通过配置此文件,可以轻松添加自定义数据集。数据集的相关参数包括数据源地址、数据集格式、样本数量等,支持 Hugging Face 和 ModelScope 两个平台的数据集仓库。针对不同格式的数据集,提供了详细的配置示例,如 `alpaca` 格式的指令监督微调数据集、偏好数据集等,以及 `sharegpt` 格式的多模态数据集等。今天我们通过自定义数据集的方式来进行qwen2.5_14B_instruct模型进行微调
机器学习核心:监督学习与无监督学习
本文深入解析了机器学习中的监督学习与无监督学习,涵盖理论基础、应用场景及典型算法实现,如线性回归、决策树、K均值聚类和主成分分析,并通过代码示例加深理解。适合初学者和进阶者阅读。
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
提高工作效率的关键:2024年10款最实用日程管理软件推荐
随着工作节奏加快,日程管理成为职场和个人生活中的重要部分。2024年,市场上出现了众多高效日程管理软件,既包括适合企业团队协作的强大工具,也涵盖了帮助个人优化日程的轻量级应用。本文推荐10款最受欢迎的日程管理软件,覆盖国内外多个工具,帮助用户挑选最适合自己的那一款,从而提高工作效率和生活质量。
关于大模型语料的迷思
随着大模型发展的不断深入,我们越来越关注到语料质量对模型能力的影响,语料中的偏差和主观性会导致生成内容不准确或带有偏见。智能引擎事业部是阿里内部深耕多年的AI工程团队,为内部业务提供了完整的大模型工程体系,持续关注大模型训推性能、成本、研发范式等关键问题。本文将基于我们的思考,探讨大模型语料的复杂性及其背后的思维过程。
基于AI的多栈能力探索
本文介绍了通义灵码,一款基于通义大模型的智能编程辅助工具,支持实时续写、代码生成、单元测试、代码优化等功能,显著提升开发者效率和代码质量。通过IDEA插件安装,操作简便,适用于多种开发场景。
XiYan-SQL:一种多生成器集成的Text-to-SQL框架
XiYan-SQL 是一种创新的多生成器集成Text-to-SQL框架,通过M-Schema增强模型对数据库结构的理解,结合ICL与SFT方法提升SQL生成质量和多样性,经实验证明在多个数据集上表现优异,特别是在Spider和SQL-Eval上取得了领先成绩。
MySQL模糊匹配技巧:无需ES的高效实现
在数据库应用中,模糊匹配是一个常见的需求,尤其是在不引入Elasticsearch(ES)等外部搜索引擎的情况下。MySQL作为强大的关系型数据库,提供了多种实现模糊匹配的方法。本文将分享如何在MySQL中实现模糊匹配,并提供五大步骤和十个实战案例,帮助你提升查询效率和性能。