海量数据实时计算利器Tec
引子
在刚刚过去的2015年双11大促中,搜索事业部的实时计算和在线学习系统Pora经受住了前所未有的双11巨量用户行为消息的冲击,在流入实时消息量持续超过300w/s,甚至峰值飙升至501w/s的压力下始终保持了端到端秒级实时效果,助力相关的搜索和推荐实时业务取得了很好的效果。
Pora如何能
Apache Flink 的迁移之路,2 年处理效果提升 5 倍
在 2017 年上半年以前,TalkingData 的 App Analytics 和 Game Analytics 两个产品,流式框架使用的是自研的 td-etl-framework。该框架降低了开发流式任务的复杂度,对于不同的任务只需要实现一个 changer 链即可,并且支持水平扩展,性能尚可,曾经可以满足业务需求。
Flink SQL 功能解密系列 —— 数据去重的技巧和思考
去重逻辑在业务处理中使用广泛,大致可以分两类:DISTINCT去重和FIRST_VALUE主键去重,两者的区别是DISTINCT去重是对整行数据进行去重,比如tt里面数据可能会有重复,我们要去掉重复的数据;FIRST_VALUE是根据主键进行去重,可以看成是一种业务层面的去重,但是真实的业务场景使用也很普遍,比如一个用户有多次点击,业务上只需要取第一条。
Flink BucketingSink 源码分析
0x1 摘要
BucketingSink类提供了非常完美的功能支持数据落HDFS,在实际业务中不建议自己去实现,直接采用此类可以避免一些坑。注:此文基于Flink 1.6.3 版本源码。
0x2 BucketingSink 类结构分析
我们关注RichSinkFunction、Checkpoint.
开源大数据周刊-第97期
本期周刊带来了开源社区重要的产品更新,包括Flink和Alluxio等,还有互联网一线公司以及传统银行业的最新大数据应用实践。
基于 Flink 构建 CEP 引擎的挑战和实践
奇安信集团作为一家网络安全公司是如何基于 Flink 构建 CEP 引擎实时检测网络攻击?其中面临的挑战以及宝贵的实践经验有哪些?本文主要内容分为以下四个方面:
1. 背景及现状
2. 技术架构
3. 产品及运维
4. 未来发展与思考